Systemic Risk Measurement of Native cryptocurrencies and Stable coins emerging from interconnectedness

An application of tail dependence-based MST and CoVaR approach Beccalli, Elena (elena.beccalli@unicatt.it) Iftikhar, Erum (erum.iftikhar@unicam.it)¹

Abstract

This paper analyses the dynamics of the interconnections of native cryptocurrencies and stable coins and their impact on their systemic risk contribution. Results obtained from MST analysis identify Ether and GUSD as the most central nodes, while CoVaR results indicate that Ether and GUSD are the highest-risk contributors. MATIC and USDT are identified as periphery nodes and contribute the least to the systemic risk. The risk contribution of native cryptocurrencies decreases with increase in interconnection, while that of stable coins increases and the difference in results could be attributed to their underlying properties of decentralization in their issuance, management and governance.

Keywords: Cryptocurrency, Stablecoins, systemic risk, spillover effects, CoVaR, network analysis.

JEL Classification codes: G01, G15, G32

¹ Erum Iftikhar, Via Ernesto Breda 25, Sesto San Giovanni, Milan, Italy, 20099

1. Introduction

The term "crypto asset" has been defined by the International Organization of Securities Commissions as "a type of private asset that depends primarily on cryptography and DLT or similar technology as part of its perceived or inherent value, and can represent an asset such as a currency, commodity or security, or be a derivative on a commodity or security" (IOSCO, 2020)

Blockchain was developed as a direct reaction to the 2008 financial crisis, which saw widespread fear and mistrust of big, centralized banks due to bank collapse. The goal of blockchain technology was to execute transactions without the need for a central middleman (Ganley, 2023). The idea behind the design of crypto assets was to improve and democratize the lending and payment systems. Crypto assets, specifically those built on distributed ledger technology (DLT), are utilized in many financial services, e.g. payments, lending, funding, trade, etc. Distributed ledger technology could be defined as "a set of technological solutions that enables a single, sequenced, standardized, and cryptographically secured record of activity to be safely distributed to, and acted upon, by a network of diverse participants" (Bains, 2022). The data is usually distributed across all networks through nodes and control of this data is managed by multiple participants in a decentralized manner.

In recent years the growth of crypto assets has been very volatile. The total market capitalization of crypto assets was almost \$3 trillion in November 2021, before dropping to less than \$1 trillion in July 2022, and currently, it stands at \$1.27 trillion. As the crypto ecosystem is expanding, it is becoming more integrated and interdependent. According to (Arner, 2023) somehow the crypto ecosystem, having properties of decentralization and disintermediation is moving towards the traditional intermediaries-based financial system.

The growing interconnectedness and interdependencies observed within the crypto ecosystem are no different from traditional financial systems. These interdependencies can either be systematic or institutional, where the former refers to integration between two or more systems in which the performance of one inevitably effects the performance of others in the network. In institutional integration, the source of interdependence between market systems and market participants results from the complicated activities of central authorities that create direct and indirect relationships among them. The major factors responsible for increasing interdependencies in global crypto ecosystems are financial consolidation, regulatory flexibility, public policy, and technological innovation.

The interconnected financial structure has many benefits in terms of resilience and recovery during times of crisis. Antonio et al. (2016) proposed a framework to look at how interconnection might lead to both fragility and resilience. Chief Economist Andrew Hanldane said in his speech that "highly interconnected financial networks may be robust yet fragile in the sense that within a certain range, connections serve as shock absorbers and connectivity engenders robustness. However, beyond a certain range, interconnections start to serve as a mechanism for the propagation of shocks; the system flips to the wrong side of the knife edge, and fragility prevails." (Bovy, 2022).

Crypto assets appeared and flourished after the Global Financial Crisis in 2008; however, they were not considered a threat to the financial system until recently (Board, 2018). FSB, in their recent report on crypto assets in 2022, acknowledged the escalated surge in their market capitalization of crypto assets, their deep interconnections with other financial markets, and their adoption in those markets. These developments have changed policymakers' perceptions to the point where it is now deemed necessary for them to make appropriate policies to avoid any future risk and to regulate them to harness their benefits.

A network of "systemically important crypto institutions" is formed in the crypto ecosystem as a result of these interdependencies. These institutions come in a multitude of shapes, including crypto conglomerates, crypto mediators, and crypto infrastructure. These deregulated interdependencies have shown poor risk management and are often involved in market misconduct, a lack of transparency, inadequate risk management, and market malpractice (Arner, 2023).

The cryptocurrency ecosystem is also susceptible to various risks through cyber-attacks, exchanges, and central authorities (Weaver, 2018). Nicholas Weaver identified four major areas related to the risks of cryptocurrencies, which include technical risks effecting participants in the ecosystem, economic risks to the participants, systemic risks to the crypto asset ecosystem, and lastly, risks to society. According to Houben (2020), these crypto assets incorporate macroeconomic risks, which can cause negative effects on monetary policy, risks to capital flow volatility, fiscal risks, legal risks, and risks related to consumer protection, market stability and the integrity of the financial system. Some of these risks stem from the technology on which crypto assets are built, while others are related to the law-enforcing system and regulatory policies. Systemic risk can arise because of the worms, as there are peer-to-peer systems in blockchain-based crypto assets. A worm can manipulate a P2P node, extend to all connected nodes, and eventually spread globally in a matter of seconds.

The World Bank defines contagion as a shock mechanism that spreads across nations while taking into consideration market co-movements that amplify the correlation between different economies. The analysis of the contagion effect is crucial for determining how certain financial assets are interconnected following unexpected events like crises or bubbles. The contagion channel among cryptocurrencies is amplified during times of crisis because of increased integration and interdependence. Researchers have empirically investigated the co-movement of price in native cryptocurrencies and systemic risk in the crypto currency market, e.g., Huynh (2018), Bouri (2019), Tiwari (2020), Bruhn (2022), Akhtaruzzaman (2022), and Arner (2023). All research confirms that due to high price volatility, price bubbles exist in the crypto market, which indicate high risk to the investors in these assets. Cryptocurrencies which have high

market capitalization contains high contagion risk. The presence of co-explosivity during the period of crises and increased interconnectivity are also evident from these studies.

Stable coins emerged as the eventual solution to these issues. Cryptocurrencies referred to as "stable coins" are those that are fixed to a specific value and backed by fiat money, usually the US dollar or the euro. They keep their peg in different ways, depending on which stable coin is most prevalent. The non-volatile assets help cryptocurrency investors protect themselves from market volatility and are trusted globally as risk-free hedging options, with market capitalizations in the billions of US dollars (Ganley, 2023). While there are many potential benefits for the financial system from global stable coins, including lower transaction costs for global payments and increased inclusive finance, new risks are also emerging for monetary policy and financial stability (Group, 2019). Purchasing the safe assets that support a global stable coin may lessen the amount of liquid assets available in financial markets, which can lead to financial distress. It may seem from the word "stable" that the volatility of the SCs is zero, but it is not. In particular, Tether's median volatility is 2.3%, USD Coin's 1.5%, TrueUSD's 6.6%, and Dai's 7.1%, whereas Bitcoin's is 62.2% and Ether and XRP's is over 80%, as determined by Melachrinos, and Pfister (2020). This brings attention to the fact that stable coins share a major share of the traded coins in the cryptocurrency market and raises the question, "Are they affected by the changes in price movements of other assets?" If a stable coin collapses, it would erode confidence in the market overall as well as in that particular coin. The credibility of stable coins became a question when the ecosystems of Luna and Terra failed. (Briola et al., 2023).

There exists a very limited literature on the growing interconnections of stable coins and their systemic risk contribution during periods of turbulence. Our study contributes to the available literature by investigating the interconnectedness of native cryptocurrencies and stable coins in cryptocurrency market and how much they are impacted by the price changes of entire market

by using network topologies generated from MST analysis for the period of 2020 to 2023. Also, by employing the CoVaR approach, we have measured the risk in isolation, spillover effects and systemic risk contribution of native cryptocurrencies and stable coins. To evaluate how time affects the degree of linkages and systemic risk contribution, simple linear regression is run between centrality values and time-varying Δ CoVaR.

The remainder of the research is arranged in the following manner. In Section 2, we present the relevant literature carried out in this field and how our research adds to it. In Section 3, data and the empirical methodology used in our study is discussed in section 4. In Section 5, we interpret the relevant empirical findings and discuss the corresponding results. Section 6 concludes research questions and findings.

2. Literature Review

There are yet no globally consistent definitions and taxonomy of crypto assets. These digital assets are based on the internet, advanced cryptography, blockchain and distributed ledgers. Blockchain and distributed ledger technology eliminates the need of intermediaries in any system. It facilitates direct peer to peer transactions among participants.

Cryptocurrency market carries many potential investment opportunities but it also pose greater risk for investors. A research study in 2020, used quantitative descriptive analysis, (Dasman, 2021) on the returns of 15 cryptocurrencies that had greatest market capitalization. The purpose of their research was to determine the returns and risks of investment in crypto assets. They used descriptive analysis by evaluating risk measures and Heteroscedastic model GARCH (1, 1) for empirical analysis. The results showed that investing in crypto assets is more profitable in terms of high returns than investing in other currencies or stock market. However, crypto currencies carries extreme risk of losses and volatility clustering or heteroscedasticity.

Similar results were generated by research conducted by Bruhn et al. (2022). They examined the financial risk features of the entire cryptocurrency market portfolio and individual cryptocurrencies. They made a portfolio carrying the 20 largest cryptocurrencies, with a market capitalization of almost 82.1% of the total cryptocurrency market. They applied extreme value theory to investigate extreme tail risks by using the returns of these currencies. They employed t-student Copula to look at potential portfolio diversification effects and the GARCH-EVT technique to predict the tail distribution. The empirical analysis revealed that, although Bitcoin was the most stable cryptocurrency, all cryptocurrencies exhibited significant price fluctuation. Every return distribution has a strong tail and a high tail risk. Particularly for Ethereum and Bitcoin, a significant positive intra-market correlation was discovered. The study came to the conclusion that there is a considerable chance of loss when investing in individual cryptocurrencies or a portfolio.

Empirical investigation by Huynh et al. (2018) explored the possibility of contagion risk among cryptocurrencies during periods of crises. It analyzed the movement of asset returns based on price dynamics and price volatility to see if it could spread to other cryptocurrencies of the same type. Using the Copulas approach, this research has generated empirical evidence of these crypto assets' mutual impact. It showed that all pairs have significant left tail dependence with Chi-plots. It also confirmed the presence of systemic risk in these crypto assets. The statistical techniques used e.g. Kendall-plots, Chi-plots, and Copulas estimation produced the same results showing the existence of contagion risk.

The existence of co-explosivity among cryptocurrencies is also confirmed by the research "Coexplosivity in the cryptocurrency market", by Bouri (2019). The seven largest cryptocurrencies by market capitalization, with a period of over two years, were brought under consideration for the research. The logistic regression approach was used for empirical analysis. The research concluded with evidence of multiple periods of explosivity in all cryptocurrencies and the explosivity time period in one currency was found to be dependent on the presence of explosivity in another cryptocurrency, which shows the existence of co-explosivity among selected crypto assets.

Extreme price volatility in the cryptocurrency market indicates a high risk to investors in crypto assets. It also hints at the presence of bubbles in the price movement of crypto assets. The failure of one crypto currency can lead to the failure of other assets due to the integrated market structure. The empirical investigation to determine the co-explosivity of crypto assets was performed by Arianna and Alessia in 2020. They used the unit root testing approach to determine the co-explosivity of crypto assets and crisis transmission channels (Agosto et al., 2020). They included five cryptocurrencies with the largest market capitalization in their study to investigate the presence of bubbles in different phases of their price behavior. The research confirmed the presence of high interdependence among cryptocurrencies and a significant relationship between cryptocurrencies co-explosivity. They further added that increased interdependence makes them prone to higher risks.

Tiwari (2020) also confirmed the presence of contagion risk between large cryptocurrencies determined by market capitalization size, such as BTC, LTC and XRP. The quantitative analysis was carried out for the period of 04-08-2013 to 17-06-2018 by using non-parametric mixture copulas and full-range tail dependence copulas. Research findings from Chi-plots and Kendall plots showed that strong tail dependence exists in each pair of the cryptocurrencies. Upper tail dependence was found to be significant for the BTC-LTC pair, while for other pairs of crypto currencies, lower tail dependence was significant according to mixture copula results. However, extreme upper and lower tail dependence was found to be significant in all pairs of cryptocurrencies, as shown by the results of full-range copulas, which confirms the presence of high contagion risk among major cryptocurrencies. A research study by Ahelegbey (2021) was aimed to determine the relationship among crypto assets during turbulent times. He used the extreme downside hedge along with extreme downside correlation econometric modeling

techniques and extended it to a multivariate networking model framework to find systemic risk tail dependence among them. Asset bubble interconnectedness was also investigated, as he indicate the existence of extreme risks. The study showed the existence of a significant and positive relationship among the tail risks of cryptocurrencies. On the basis of the results, all crypto assets were combined into two categories: speculative currencies, i.e., BTC, responsible for giving tail contagion, and technical currencies, i.e., ETH, that are receiving tail contagion. The contagion channel among cryptocurrencies is amplified during times of crisis because of increased integration and interdependence. The empirical evidence was provided by Akhtaruzzaman (2022). He selected 17 cryptocurrencies, which have around 76.11% of the total market valuation for the time period of 1 January 2017 to 30 June 2021. Conditional Value-at-Risk approach was used to build the index of systemic contagion from a Principal component analysis of selected cryptocurrencies. The research findings showed that during pandemic, interconnections among cryptocurrencies were increased, that resulted in increased transmission channels of contagious shocks. High SCI value indicated presence of increased systemic channels of risk driven by pandemic, while Bitcoin performed as a more stable cryptocurrency during pandemic. Speculative bubble behavior of cryptocurrencies can create financial instability in the markets and can even lead to systemic risk. To calculate the systemic risk and identify the transmission channels across both crypto and non-crypto markets, Hakim, (2023) developed multivariate conditional value-at-risk model. By employing Delta MCoVaR he generated results which showed that the crypto assets are the major sources and channels of systemic risk and simultaneously spread it across crypto ecosystem and towards the S&P 500, oil, and gold. This transmission is more evident during pandemic and 2021 crypto bubble event. Arner et al. (2023) conducted a research to investigate the role played by interdependencies of the crypto ecosystem in effecting practices responsible for managing internal risk and crisis control in the crypto ecosystem. Market trends and significant events of the crypto market in

the years 2022-2023 were used to evaluate the factors contributing to the increased interconnectedness in the crypto ecosystem and how these interdependencies disturb the mechanism to manage internal risk and crises while projecting known and unknown systemic risks. According to their research, the collapse of crypto assets in the years 2022-2023 was mainly due to poor internal risk management and a lack of supervision and regulatory policies. The situation even gets worse when there is a lack of understanding about the market participants, and the crypto ecosystem, and a lack of framework to understand the interconnectivity of services and entities in the system. They used case studies of recent market collapses in both centralized exchanges (CeFi) and decentralized assets and exchanges (DeFi). Market valuation of crypto assets increases during the period of high price volatility, however, it also poses threats to financial stability. Adverse effects of market shocks can cause risks to the financial ecosystem. Federal Reserve Bank of New York report published research on "Financial Implications of digital assets" (Azar, 2022) which examined the emerging vulnerabilities that could bring potential risks to financial stability, if the cryptosystem becomes more interconnected and systemic, in the absence of regulations. Federal Reserve uses a framework to examine vulnerabilities in traditional finance. In this research, the same framework was used to analyze vulnerabilities in the digital financial ecosystem. According to this research, as the crypto ecosystem gets bigger with increased interconnected with the traditional financial system, risks from asset valuations could move to the traditional financial sector. However, stablecoins that are backed by money market instruments indicate major financial stability risk which can be materialized if it becomes more interconnected with traditional financial system. Increased connectedness of crypto assets with regulated financial market increases systemic risks is also confirmed by ECB in Financial Stability Review 1 (Hermans, 2022). It states that systemic risk rises as interconnections grow higher between cryptocurrencies and the traditional finance, the usage of leverage and lending practices

increases. It also focuses on gaps in available data and regulatory policies which needs to be resolved to reduce the possibility and impact of these risks.

Research study conducted by Ganley (2023) was focused on stable coins price movement and movement in the returns of entire crypto currency market and traditional finance market. He used a time-series OLS regression, and a Granger-Causal test to measure co movement of prices of four largest stable coins (USDT, USDC, BUSD and DAI) and cryptocurrency market. Results showed that both USDT and USDC have statistically significant correlation with SP500, while BUSD has significant price correlation with the price of cryptocurrency market. Only DAI has no correlation with either of the market. Thus identified DAI as most trustworthy stable coin for hedging against market risks.

There is currently little research on the contagion networks and systemic risk among crypto assets with contradicting results and how they behave as a result of changes in interconnections of crypto assets under normal conditions and in turbulent times. Many studies and analyses conducted so far have concentrated on a single cryptocurrency or a small number of cryptocurrencies; thus, an in-depth investigation of the cryptocurrency market for spillovers and systemic risk channels is still lacking. Further, there exists a very limited literature on the growing interconnections of stable coins and their systemic risk contribution during periods of turbulence. Our study contributes to the existing research by investigating the interconnectedness of native cryptocurrencies and stable coins in cryptocurrency market and how much they are impacted by the price changes of large native cryptocurrencies and entire market by using network topologies generated from MST analysis for the period of 2020 to 2023 and Δ CoVaR approach to estimate risk contribution of each native cryptocurrency and stable coin to the market distress. It also provides insights into the evolution of interconnection and how they affect risk contribution or absorption properties of digital assets.

3. Data

Data for the daily adjusted closing prices of 27 native cryptocurrencies and 8 stable coins have been collected from the webpage <u>www.coinmarketcap.com</u> for the time period of January 1st, 2020, to September 18, 2023. Cryptocurrencies are defined as "digital representations of a value or contractual rights that use some form of distributed registry technology and that can be transferred, stored or traded electronically" Стойка (2021), and stable coins could be defined as "digital units of value that are not a form of any specific currency (or basket thereof) but rely on a set of stabilization tools which are supposed to minimize fluctuations of their price in such currency(ies)" as defined by Bullmann el al. (2019). Native cryptocurrencies and stable coins and their codes are given in Table 1 and 2, respectively.

The chosen crypto currencies and stable coins have the highest market capitalization and are included in top-ranked 100 crypto coins, which cover more than 88% of total market capitalization. Those stable coins are included in our analysis that are pegged to either fiat currency, i.e., the dollar, euro or gold.

The macro variables chosen for the analysis of Δ CoVaR include those variables that affect the cryptocurrency market. Although each cryptocurrency and stable coin behave differently in response to changes in those variables, there is some common trend or behaviour. The returns of the SP500 Index, CBOE VIX volatility index, fear and greed index of the cryptocurrency market, and market capitalization of cryptocurrencies are chosen as state variables for our study. The Fear and Greed Index is an indicator that analyses and generates a number between '0' and '100', where 1 is the indication of extreme fear and 100 is the indication of extreme greed. Extreme fear implies that the investors in the market are selling, and extreme greed implies that the traders are in a mood to buy more.

While Index of SP500 and CBOE volatility index covers the traditional financial market behaviour and events while fear and greed index and market capitalization of cryptocurrencies and stable coins are specific to cryptocurrency market. Data for returns of SP500 index and CBOE volatility Index has been collected for the same time period from Yahoo Finance website <u>www.finanace.yahoo.com</u> and data for fear and greed index (FIG) has been collected from alternative.me <u>https://alternative.me/crypto/fear-and-greed-index/</u>. Data for market capitalization of cryptocurrencies has been collected form <u>www.coinmarketcap.com</u>. These chosen variables represent investor sentiment, trend and expectations, and business cycles. Cryptocurrencies prices data is then transformed in to log returns values in percentage form. The total daily observation are 1357. Figure 1 and 2 displays the entire period's price fluctuations for the chosen currencies. The daily rate of return for each currency was determined for the purpose of studying correlations, and it was defined as ri (t) = ln. Pi (t) – ln Pi (t-1), which represents the price of the cryptocurrency at t and t-1, respectively, where Pi (t) and Pi (t-1) are the corresponding prices. The statistical summary of returns for each currency

is displayed in Table 2.

4. Methodology

The previous studies on the subject of systemic risk utilized the network analysis approach, which focuses on the collective loss sharing of all market players, and the micro-evidence approach, which involves the individual contribution of institutions to systemic risk (Krygier, 2014). This study takes into account both approaches to investigating interconnectedness and systemic risk. While network analysis is used in order to investigate the interconnections of the systematically important market participants, and micro-evidence approach is used to assess the systemic risk caused by each participant individually and lastly, we will analyse if there is any relationship between the centrality measures of network participants and the contribution to the systemic loss in cryptocurrency market.

4.1 Network Analysis for the measurement of interconnectedness

In network analysis, centrality metrics have gained popularity as a metric for determining influential nodes in a network. It also determines the effect of changes in influential nodes on

other nodes within the network. Numerous studies have evaluated market dynamics and performance using the values of centrality indicators. (Tariq, 2023). Networks based on correlation are very useful in identifying links between assets and institutions. They are compatible with the MST algorithm and are simple to calculate and evaluate. By identifying the major participants in the market and observing their actions during periods of volatility, MST analysis provides a detailed understanding of the trends of the market. Additionally, it issues warnings regarding the assets and firms that fuel market instability. It also provides information on portfolio diversification for risk mitigation. Peripheral nodes may be seen as safe havens during market distress. Economists, investors, and regulators can all benefit from MST graphs, weights, and centrality values (Tomeczek, 2022).

4.2 Minimum Spanning Tree Analysis

Creating the matrix of correlations between the daily returns of all the cryptocurrencies under study is the first step in building the "Minimum Spanning Tree" (MST). This yields the coefficients of the Pearson correlations between each pair of currencies, i and j, which are defined as:

$$C_{ij} = \frac{n(\sum r_i r_j) - (\sum r_i) (\sum r_j)}{\sqrt{[n\sum r_i^2 - (\sum r_i)^2] [n\sum r_i^2 - (\sum r_i)^2]}}$$
(1)

A correlation matrix is obtained:

$$C = \begin{bmatrix} C_{11} & \cdots & C_{1N} \\ \vdots & \ddots & \vdots \\ C_{N1} & \cdots & C_{NN} \end{bmatrix}$$
(2)

N is the total number of currencies (36 in our study), and C_ij values range between -1 and 1. The elements of the correlation matrix C_ij can be converted into distances, according to Mantegna (1999), to create a distance matrix where

$$d_{ij} = \sqrt{2(1 - C_{ij})} \tag{3}$$

The value ranges from 0 to 2, so if the correlation is high among cryptocurrencies, the distance will be short among them. To construct MST, combine nodes N (which are the native cryptocurrencies and stable coins) with links N–1, and thus the total of all the distances of the links will be the smallest. So the most relevant data will be taken out of the correlation matrix using the N–1 linkages. We have created the MST that employs the Kruskal algorithm (1956) by following Mantegna (1999) and Mantegna and Stanley (2000). We followed the following steps for creating the MST graph. First of all, using the distance matrix, we selected N (N – 1) / 2 elements in ascending order, then selected the cryptocurrency pair with the shortest distance and included the link to the graph. After that, we added the link to the next pair of cryptocurrencies, which has the smallest distance between them. The same process is repeated until all the currencies are linked together in the MST graph.

We first examined the N (N - 1) / 2 descriptors, components of the correlation matrix created prior to displaying the MST, which was created using the algorithm previously explained. Furthermore, a comparison was made between the correlation coefficients' significance values. From MST, different centrality measures were collected, which indicate different aspects of the interconnectedness of cryptocurrencies. These four centrality measures include degree centrality, betweenness centrality, closeness centrally, and eigenvector centrality.

4.2.1 Degree centrality

Degree centrality counts the total number of edges, a node is linked to in a network. It is the primary centrality metric and could be regarded as the instant risk that is circulating through the network and that a node can contract.

Degree centrality of Node (i) = Total number of edges connected to node (i) (4)

4.2.2 Closeness centrality

The distance of a node from another node in the network is calculated by its closeness centrality. This centrality metric shows a node's level of impact within a network. Its closeness to other nodes in the network is shown by its closeness centrality.

Centrality and closeness could be determined as

Closeness Centrality (i) =
$$\frac{N-1}{\sum_{j=1}^{N} d(i,j)}$$
 (5)

While N is the total number of nodes in the graph and d(i, j) is the shortest path between node *i* and node (*j*). While $\sum_{j=1}^{N} d(i, j)$ denotes the total of the shortest distances between node (*i*) and all other nodes (*j*) in the network.

4.2.3 Betweenness centrality

The shortest distance between two nodes is measured by this centrality. It detects the nodes that serve as a link between various nodes. The information flow in the network can be significantly influenced by the node with a high betweenness centrality. It displays the most significant vertex that joins several vertex pairs.

Betweenness Centrality =
$$\sum_{s \neq v \neq t \in V} \frac{\sigma st(v)}{\sigma st}$$
 (6)

Whereas Σ st is the total number of shortest paths from node (s) to node (v) and σ st(v) is the total number of shortest paths from node (s) to node (t) that pass through node (v).

4.2.4 Eigenvector centrality

Another term for it is Broncich's centrality. It calculates a node's connections within its local network. The node with the highest eigenvector value is the one that is most powerful, and its power originates from its relationships with other strong or weak nodes.

Eigenvector Centrality (v) =
$$\frac{1}{\lambda} \sum_{j=1}^{n} \alpha_{j,v}$$
 (centrality j) (7)

4.3 An application of CoVaR for the measurement of Systemic Risk

The micro-evidence approach provides numerous ways to gauge systemic risk. Adrian and Brunnermeier (2011) developed CoVaR, which is one of the measures of systemic risk, in their paper of the same name.

Conditional, contagion, or co-movement is what the Co stands for, highlighting the systemic aspect of their risk assessment. According to their definition, CoVaR is the VaR of a financial system conditional on various institutions being in distress. In this context, "distress" is defined as an institution falling below its 1%-VaR level. VaR is the highest loss that can occur with a given probability during a given time frame.1.

Further, Δ CoVaR could be defined as CoVaR conditional on the institution (*i*) which is under distress (at its 1%- VaR) minus the CoVaR that is conditional on the institution (*i*) which is in its median state (at its 50%-VaR). CoVaR and Δ CoVaR are estimated, conditionally and unconditionally, for 36 cryptocurrencies including native cryptocurrencies and stable coins during the period January 1st, 2020, to September 18, 2023. Whereas the conditional evaluation produces CoVaR values based on market indicators (traditional financial markets and crypto currency markets), the unconditional estimation yields a CoVaR value that stays constant across time. In contrast to the unconditional estimate approach, which is a static approach, the conditional estimation of CoVaR can be thought of as a dynamic approach. The term CoVaR always refers to two entities of some kind. When discussing CoVaR in this article, is the cryptocurrency market (CCM) and certain cryptocurrencies return i. The additional macro variables include the SP500 index, the CBOE Volatility Index, the market cap and fear and greed index of crypto market, serving as proxies for traditional and crypto market short-term risks and sentiments.

One of the most common measures of systemic risk is VaR.

$$VaR_{a}(L) = \{l: \Pr(L > l) \le 1 - a\}$$
 (8)

is the smallest loss l for which the probability of a future loss L greater than loss l is equal to or less than 1 - a.

Adrian and Brunnermeier first presented the concept of CoVaR as a risk measure in 2011. It is the VaR of a company, institution, nation, or portfolio conditional on another organization experiencing financial crises. As demonstrated in this study, CoVaR can also be used to analyse the risk exposure of one entity to another, such as the systemic risk contribution of a corporation to a financial system (or market).

$$\Delta \text{CoVaR}_q^{J|i} = \text{CoVaR}_q^{J|X^i = VaR_q^i} - \text{CoVaR}_q^{J|X^i = VaR_{Median}^i}$$
(9)

In order to check the robustness of the results generated from the CoVaR analysis, a timevarying CoVaR analysis is performed by including the state variable. The derivation of equations for estimation of unconditional and conditional VaR, CoVaR and Δ CoVaR is given in Appendix. Further, the conditional time-varying values are then regressed against centrality values calculated from MST analysis. The frequency of observations is reduced to 45 months, and the results still hold valid and are in line with the results generated from the high frequency of daily observations.

4.4 Multiple Linear Regression Analysis for measuring the Relationship between Centrality Measures and contribution to systemic risk Values

Multiple linear regression is employed to predict the dependent variable y (which in our research is the time-varying Δ CoVaR values) and a number of independent variables. This relationship could be explained with the following formula

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \varepsilon \tag{24}$$

The regression equation parameters were estimated by the ordinary least square method (OLS) where the sum of the root square error is minimized. The regression coefficients, and, contain

the slope coefficient for the independent variables, whereas is the predictor and ε is the error term.

5. Research Findings

In this section results obtained from MST, $\Delta CoVaR$, and multiple linear regression are interpreted and discussed.

5.1 Results of MST analysis

Figure 3 of MST 2020 shows the summary of most central and periphery nodes for the year 2020. Centrality values of all cryptocurrencies and stable coins calculated from MST are shown in Table 4. Tables 5, 6, and 7 show the centrality values calculated for the years 2021, 2022, and 2023 respectively. Table 8 shows the centrality values calculated for the entire period 2020-2023.

5.1.1 MST 2020

For the MST 2020, ETH is the most influential node, with the highest values of all centrality measures. Influential currencies other than ETH are WBTC, BNB, MKR, XTZ, USDP, PAXG, THETA, SNX, RPL, BCH, and ADA, according to Table 4. In 2020, the amount of BTC on Ethereum (represented by tokenized BTC such as wrapped BTC) surpassed the amount of BTC on the lightening network, the Bitcoin layer 2 scaling network.

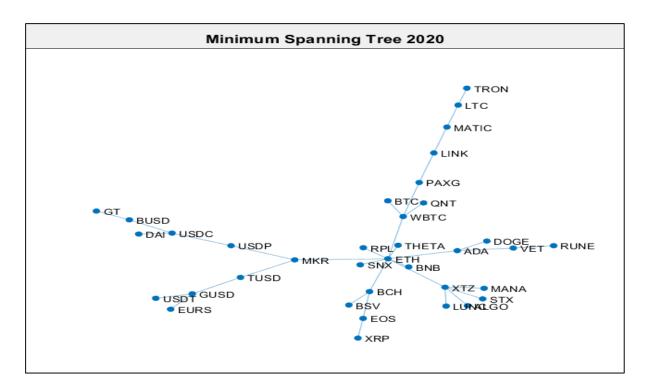


FIGURE 3. Minimum spanning tree is plotted by using data of log return values of selected native cryptocurrencies and stable coins. Pearson correlation matrix was generated by using log return values which was then transformed by using distance matrix. This matrix was employed in MATLAB to create MST for the year 2020.

Therefore, WBTC saw increased trading volume and an increase in price during 2020. XTZ has experienced significant volatility since its launch in 2018. Soon after its launch, its price and the entire crypto landscape went down. However, in 2020 as the bear market was in full swing the price of XTZ touched new heights but the increase was short-lived, as by the end of 2020, its price was decreased to even less than half. Due to COVID-19 and the bear market, many currencies experienced increasing trading volume and high prices. BNB also experienced price appreciation due to increased trading volume, resistance levels, and correlation with market trends and indicators. Research conducted by Kumar et al. (2022), to measure return and volatility connectedness provided evidence for Ether being the most influential and central cryptocurrency. Another research by Katsiampa et al. (2022) confirmed these results. They measured network structured changes after COVID-19 in the cryptocurrency market by using MST and PMFG graphs from January 2019 to December 2020. Research findings showed that those currencies that involve the DAaps protocol became more attractive to investors in 2020.

The sample period was from October 2017 to 5th January 2021. Another research showed that those stable coins which are pegged with gold experienced high volatility during 2020 however the increase was insignificant (Wasiuzzaman et al., 2021).

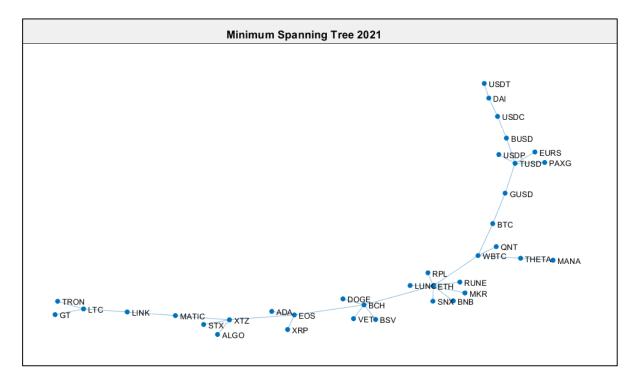


FIGURE 4. Minimum spanning tree is plotted by using data of log return values of selected native cryptocurrencies and stable coins for the year 2021.

5.1.2 MST 2021

The cryptocurrency market matured and boomed in 2021, with a number of currencies exceeding the market leader, bitcoin, and flourishing. The total market capitalization of the cryptocurrency industry increased by 187.5%, even though bitcoin only managed to yield a 59.8% return. Still, in November 2021, it reached a peak of over \$69000 (Kamau, 2022). Many of the leading coins offered four or even five-digit percentage returns. Returns on Ethereum increased to 399.2 percent as a result of the development of DeFi 2.0 protocols such as Olympus (OHM) and the popularity explosion of NFTs. The currencies with the highest returns were BNB 1268.9%, XRP 277.8%, BCH 25.7%, ADA 621.8%, and DOGE 3546.5%. Earlier in the year, prominent financial institutions and large institutional investors started endorsing

cryptocurrencies. When businesses like Tesla and Square began purchasing bitcoin with their balance sheets, the value of the cryptocurrency surpassed \$1 trillion. NFT interest skyrocketed following Beeple's 2021 \$69 million sale. Crypto-assets trended higher for the majority of 2021, despite volatile movements and periods of speculation (Hermans et al., 2022). Also, China banned the use and trading of cryptocurrencies in May 2021 since it was illegal for any kind of cryptocurrency activity. TrueUSD (TUSD), a stable coin based on the US dollar, claimed to have a \$1.5 billion supply at its height in 2021. Additionally, it made achievements in the implementation of multi-chains, collaborations with banks, DeFi ecosystem projects, and cryptocurrency exchanges. As the cryptocurrency market entered a new bullish cycle in April 2021, EOS broke above \$14.71. It was the highest price in nearly three years. For the MST 2021, ETH is the most influential mode with all high centrality measures, as shown in figure 4. Influential currencies except ETH are, BTC, TUSD, WBTC, BCH, EOS, XTZ, MATIC, and GUSD. The centrality values of all currencies and stable coins are shown in Table 5.

5.1.3 MST 2022

In 2022, the rising trend of cryptocurrency got reversed when the values of numerous crypto assets crashed, following a peak in November 2021. Almost \$1.8 trillion in cryptocurrency value vanished as values plummeted. Almost \$450 billion was wiped out in the market turbulence that followed the failure of Terra/Luna in May 2022 alone; an additional \$200 billion was lost following the collapse of FTX in November 2022 (Cornelli et al., 2023). Ethereum lost 66% of his value from the start to the end of the year. Ethereum also transitioned form proof of work to proof of stake and its price was down by 25% falling from \$1635 to \$1209. Its price was also badly hit by the market crash triggered by the collapse of FTX exchange.

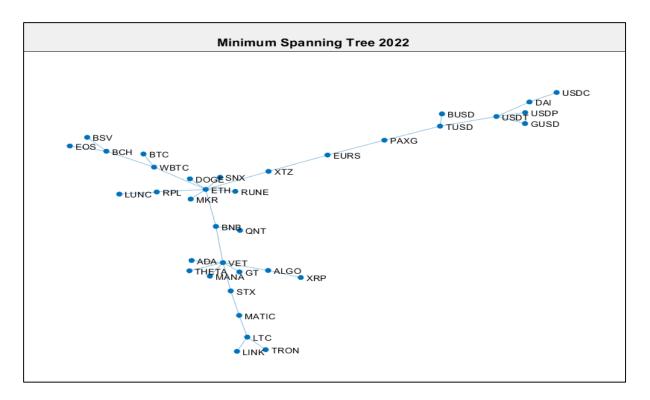


FIGURE 5. Minimum spanning tree is plotted by using data of log return values of selected native cryptocurrencies and stable coins for the year 2022.

The two least impacted by the FTX collapse, in terms of downside risk spillovers, are Tether and Bitcoin (Bouri et al., 2023). Tether (USDT), the world's largest stablecoin, achieved a ground-breaking milestone by surpassing its previous all-time high market cap of \$83.2 billion, a record set back in May 2022. After the FTX crash, stablecoins were the most adversely affected tokens, whereas USDC was found to be a net receiver from the system (Esparcia et al., 2023) While USDT continues to gain market dominance, other stablecoins like BUSD and USDC struggle to sustain their market share. BNB price saw many ups and downs during the year and in response to market crashes however, at the end of the year, it saw some recovery. Centrality values of all currencies and stablecoins are given in Table 6.

For MST 2022 as shown in Figure 5, ETH contains the highest values for all centrality measures. BNB, WBTC, EURS, XTZ, USDT, and TUSD also contain high centrality values compared to other cryptocurrencies and stable coins included in our dataset.

5.1.4 MST 2023

For MST 2023 as shown in figure 6, again ETH has the highest centrality values among all cryptocurrencies. The prominent currencies other than ETH are BNB, DAI, WBTC, VET, THETA, ALGO, ADA, DOGE, and SNX.

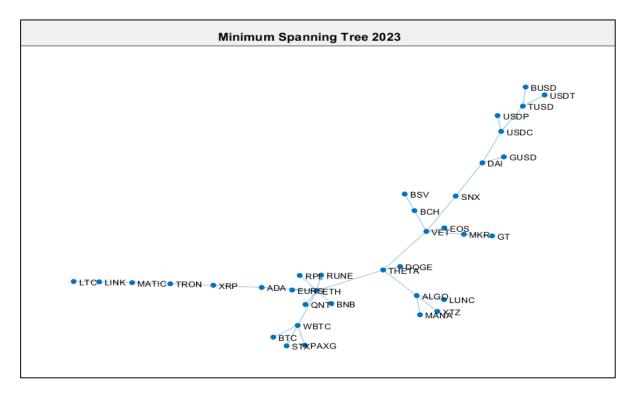


FIGURE 6. Minimum spanning tree is plotted by using data of log return values of selected native cryptocurrencies and stable coins for the year 2023.

In 2023, despite the difficult macroeconomic conditions, the overall market capitalization of cryptocurrencies climbed to almost \$1.4 trillion. The sector was probably greatly fueled by an upsurge in confidence about spot Bitcoin and Ether exchange-traded funds in the second half of 2023. Ethereum has seen an 85% increase in market cap in 2023. While this growth is substantial, it slightly underperforms compared to other major assets in the blockchain space. Our findings are consistent with the research of Ali et al. (2023), which suggests that there was an increase in the return and volatility connectivity across cryptocurrencies after the collapse of SVB. This is in line with the findings of (Yi et al., 2018) and (Kumar et al., 2022) and implies a high sensitivity of crypto returns to major economic and financial events in traditional markets. Centrality values of all currencies and stable coins are given in Table 7.

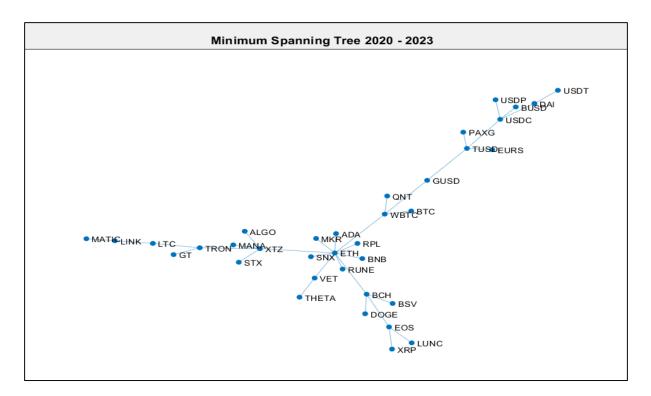


FIGURE 7. Minimum spanning tree is plotted by using data of log return values of selected native cryptocurrencies and stable coins for time period of 2020-2023.

5.1.5 MST 2020 - 2023

ETH is the most influential crypto currency, with high values for all centrality measures. Other than ETH, currencies with high centrality values are USDC, TUSD, WBTC, BCH, XTZ, and GUSD in the cryptocurrency network.

The most widely used cryptocurrency in the cryptocurrency ecosystem, BTC, does not seem to be the most central. The ETH platform is a large project that is home to several decentralized applications, while Bitcoin is only a payment method that is primarily utilized for speculative purposes (Francés et al., 2018). ETH being the most central and influential crypto currency is also confirmed by the research conducted by Hong et al. (2022), which confirms that Ethereum platform is the most famous platform for employing smart contracts rather than acting only as a store of wealth or a competitive alternative to traditional fiat money (Peng et al., 2018). Unlike Bitcoin, Ethereum has an endless supply of currencies. Eth can host both decentralized applications and tokens or coins. The emergence of decentralized applications running on blockchain, handling many of the financial tasks without involving intermediaries became very popular and many of these decentralized applications are running on the Ethereum blockchain, which makes it the most central, popular and influential node in the crypto currency network (Ciaian et al., 2018). It is also observed that Ethereum serves as a benchmark node with a hierarchical structure for most other assets. It continues to play this role over time, however, losing its centrality over turbulent time periods (Briola et al., 2022). MATIC is the periphery node with the smallest centrality values, which shows it is least affected by changes in large cryptocurrency prices and thus can provide hedging against volatile currencies, while GUSD has the highest centrality values among stable coins and USDT has the lowest centrality values. Research findings from a study also confirmed the position of USDT as a peripheral node in the network structure of cryptocurrencies and ETH as one of the central nodes in the network (Polovnikov et al., 2020). The centrality values of all currencies and stable coins are given in Tables 9 and 10.

5.1.6 MST Weight

MST 2022 has an MST weight of 12.6528, which is the smallest of all MSTs. It suggests the emergence of nodes during periods of crisis. (Tomeczek, 2022).

Year	MST Weight
2020	13.6353
2021	13.5954
2022	12.6528
2023	13.3544

Table 11: MST Weight for individual years

During the period of market turmoil not the whole market moves in unison; instead, some nodes become more prominent while connections with other nodes become weak. The high MST weight in 2023 shows a market recovery.

5.2 Empirical Results of CoVaR Analysis

The results are structured as follows: The unconditional estimates of VaR, CoVaR, and Δ CoVaR are given at 1%, 5%, and 10% percentile in Tables 12, 13, and 14 respectively. As unconditional estimations are not time-varying but are constant over time.

In order to provide an overview of each cryptocurrency's loss in terms of VaR, the summary of VaR values at 1%, 5%, and 10% are given in Tables 15 and 16. From these figures, it can be concluded that LUNC has the highest VaR value at 1%, and at 5% and 10%, RUNE has the highest value, while BTC and WBTC have the lowest value at risk at different quantiles. Table 15: Summary of VaR values for Native cryptocurrencies 2020-2023

Highest VaR				Lowest VaF	ł – – – – – – – – – – – – – – – – – – –	
	Unconditional			Unconditional		
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
LUNC	RUNE	RUNE	BTC	WBTC	BTC	

Table 16: Summary of VaR values for Stable Coins 2020-2023

Highest VaR				Lowest Val	۲.	
	Unconditional			Unconditional		
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
EURS	EURS	EURS	USDT	USDC	USDT	

Among stable coins, EURS has the highest VAR value according to unconditional estimates, while USDT has the lowest value at risk at 5 and 10, and USDC has the lowest value at 5% quantiles, as shown in Table 20.

CoVaR estimation involves running quantile regression, in which cryptosystem returns are dependent variables and are regressed on the returns of each cryptocurrency. CoVaR estimation provides information about the spillover effects of the system on cryptocurrencies when it is in distress. Δ CoVaR quantifies the contribution of an institution's shift (from a median state of 50% VaR to financial distress of 1% VaR) to the VaR of the cryptocurrency market.

Highest ∆CoVaR			Lowest ACoVaR			
Unconditional			Unconditional			
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
ETH	BTC	ETH	GT	MATIC	GT	

Table 17: 5.2.3 Summary of ΔCoVaR results for 2020-2023

 Δ CoVaR values are highest for BTC and ETH in unconditional results at different quantile levels. Our results are in line with the results generated by Chen et al. (2024). They analyzed the risk-connectedness of five cryptocurrencies (BTC, ETH, ADA, LTC, and BNB) during periods of extreme events by using returns, volatility, skewness, and kurtosis. The time-varying connectedness was found to be higher among all cryptocurrencies during periods of high volatility. During 2018 and the first half of 2019, Bitcoin showed high volatility spillovers, but Ether leads in risk spillover at all order moments, whereas BNB is the net receiver. Another study showed that the market observes how Ethereum and Bitcoin move to respond. The overarching altcoins decline along with Bitcoin and Ethereum, and vice versa. While new cryptocurrency assets might still be introduced to the market, it is highly likely that they will follow the price movements of Ethereum and Bitcoin, which control the majority of the market for all cryptocurrencies with the exception of stablecoins (Obeng, 2022). Ethereum was identified as the most influential cryptocurrency in the post-COVID period (Hong et al., 2022). Bruhn and Ernst also found Bitcoin and Ethereum to have strong and positive intra-market correlations with altcoins in the cryptocurrency market, and all 20 currencies were heavy-tailed and prone to extreme risks (Bruhn et al., 2022). Extreme tail risk in BTC, ETH, LTC, and XRP was also found in the Δ CoVaR analysis conducted by (Borri, 2019) for the period of 2015 to 2018. Results showed that all 4 cryptocurrencies were found to be highly correlated both conditionally and unconditionally. Some other studies which confirm BTC and ETH as net transmitters of risk in the cryptocurrency market are Mensi et al. (2021); Hasan et al. (2021), and Koutmos (2018). A summary of the results of Δ CoVaR values is shown in Tables 17 and 18.

Highest ∆CoVaR			Lowest ACoVaR			
	Unconditional			Unconditional		
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
GUSD	GUSD	GUSD	BUSD	USDP	USDT	

Table 18: Summary of \triangle CoVaR values for Stable coins for 2020-2023

 Δ CoVaR values are highest for GUSD in unconditional results at all quantile levels. While USDT, BUSD, and USDP have the lowest Δ CoVaR values at different quantile levels, According to the research conducted by Kołodziejczyk (2023) among stablecoins, Gemini Dollar exhibited the highest volatility, with daily returns varying between -11% and +13%. Not only that, but it is the only stablecoin with a negative mean return. For monthly investment horizons, it acts as a weak hedge, and the price of GUSD moves with the price of Bitcoin, so the relationship between the Gemini Dollar and Bitcoin could be referred to as a co-movement rather than a contagion because it is present in both regular and distressed market conditions. From a risk management standpoint, GUSD is sometimes a hedge and other times a diversifier. Also, research findings (Ma et al., 2023) confirmed our results and showed that GUSD has the highest price deviation from its peg value of \$1 when examining the run risk of all USD-backed stablecoins. For each stablecoin, the magnitude of these price deviations was different. The average discount at USDC was just 1 bps, compared to an average of 55bps of USDT. The average discount of GUSD was the highest at 78 bps, while that of BUSD, TUSD, and USDP is likewise lower than that of USDT at 1 bps, 11 bps, and 18 bps, respectively.

Our results are also compatible with research (Wang et al., 2020), in which researchers examined stable coins by using time-varying copula models for mixed cryptocurrency-stable coin portfolios. They discovered that USDT shows the best characteristics of a strong hedge for risk diversification. Another research (Xie et al., 2021) confirms our results which used

new data from the COVID-19 pandemic outbreak and examined if stablecoins have safe haven properties for traditional native cryptocurrencies. The findings confirm Tether's status as a safe haven before, during, and after the pandemic and further, when Tether is added to the portfolio, it outperforms both the naked portfolio and the portfolio which includes assets backed by traditional assets i.e., gold. Another study (Baur et al., 2021) provided evidence for the safe haven properties of stablecoins, specifically Tether. Not all stable coins remain stable in case of high price volatility, and some of them respond negatively as well. However, Tether, in response to extreme price volatility and negative returns of bitcoin, behaves positively and thus offers investors security and protection, lowering overall risk in the cryptocurrency market. Tether also provides hedging against bitcoin volatility. Results also showed that stablecoins are not stable all the time but they offer hedging against negative returns. Specifically, Tether, among all stablecoins, has the strongest positive response to extreme negative returns, thus offering investors a safe haven.

It is clear from the results that some cryptocurrencies have a higher VaR than their Δ CoVaR value, which means that although their individual losses are higher, their spillover effect and contribution to systemic risk are very small. Some cryptocurrencies which have a small VaR value than their Δ CoVaR value indicate that their individual risk is small but their contribution to systemic risk is large. Research results show that all native cryptocurrencies have high VaR values when compared with their Δ CoVaR values in unconditional estimation. On the other hand, those stable coins that have a higher CoVaR value than their VaR values are USDT, USDC, TUSD, BUSD, PAXG, and GUSD at different quantiles (1%, 5%, and 10%), which means that though their individual losses are small in case of crises, their risk contribution to cryptocurrency market distress is high.

5.3 Robustness check and Extension of CoVaR analysis

In order to check the robustness of the results of CoVaR analysis, time-varying Δ CoVaR analysis was performed by including lagged state variables in the CoVaR analysis. As conditional estimates are time-varying, they also capture the aspect of time in analysis. According to conditional estimates, LUNC, RUNE, and SNX have the highest value at risk at different quantiles, while BTC and WBTC have the lowest value at risk at different quantiles. These results confirm our unconditional results discussed in Section 5.2.

Table 19. Sum	Table 19: Summary of Var values for Native cryptocurrencies 2020-2025							
Highest VaR				Lowest VaR				
Conditional			Conditional					
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%			
LUNC	RUNE	RUNE/ SNX	WBTC	BTC	BTC/ WBTC			

Table 19: Summary of VaR values for Native cryptocurrencies 2020-2023

 Table 20: Summary of VaR values for Stable Coins 2020-2023

Highest VaR			Lowest VaR			
Conditional			Conditional			
At 1%	At 5%	At 10%	At 1% At 5% At 10%			
EURS	EURS	EURS	USDT/ USDC/ TUSD	USDT/ USDC/ TUSD/ BUSD	USDT	

Table 21: Summary of Δ CoVaR values for Stable coins for 2020-2023

	Highest ΔCoVaR			Lowest ACoVaR		
	Conditional		Conditional			
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
BTC	ETH	ETH	MATIC	MATIC	GT/ MATIC/ LINK/ TRON	

Table 22: Summary of Δ CoVaR values for Stable coins for 2020-2023

Highest ∆CoVaR			Lowest ACoVaR			
Conditional			Conditional			
At 1%	At 5%	At 10%	At 1%	At 5%	At 10%	
GUSD/ PAXG	GUSD	GUSD	BUSD	USDC	USDT	

The detailed conditional estimates of VaR, CoVaR, and Δ CoVaR at 0.01, 0.05, and 0.10 quantiles are presented in Tables 23, 24, and 25 respectively.

5.4 Empirical results of regression analysis between time-varying Δ CoVaR and centrality measures:

To analyze the interconnections in the cryptocurrency market and its impact on the systemic risk contribution of cryptocurrencies over time a simple linear regression is run between centrality values and time-varying Δ CoVaR values. The Δ CoVaR value of native cryptocurrencies and stable coins are regressed against centrality values i.e. betweenness, closeness, degree, and eigenvector. The control variables are the SP500 index returns, VIX index, and fear and greed index (FIG) of the cryptocurrency market.

The results of simple linear regression for native cryptocurrencies are shown in Tables 26, 27, 28, and 29. Results show that there exists a significant negative relationship between each centrality value and Δ CoVaR of the index of native cryptocurrencies. The coefficient value of regression between betweenness and Δ CoVaR is -.0000692 with 0.0543, -8.233668 with 0.0664 for closeness, -.0072127 with 0.0574 for degree centrality, and -.3772624 with 0.0738 for eigenvector. The relationship of SP500 and VIX with Δ CoVaR in all regression analyses is significant and negative while with fear and greed index is positive, however, this positive relationship is insignificant.

The results of the simple linear regression between time-varying Δ CoVaR values of stablecoins and centrality values are shown in Tables 29, 30, 31, and 32. The results indicate a positive and significant relationship between Δ CoVaR and the betweenness and degree measure of stablecoins. The relationship between closeness and eigenvector is negative and insignificant. The coefficient values of betweenness and degree are .0000159, 0.0970, and .0016264, 0.1007, respectively. The relationship with SP500, VIX, and FIG is negative and significant in all regression analyses. The significance of all coefficient values was checked by the Wald test. All coefficient values were found to be significant for native cryptocurrencies however for stable coins the centrality values for closeness and eigenvector centrality were found to be insignificant.

Contradicting views are found in literature when it comes to the causes of risk and contagion behavior of financial assets and institutions and how their network structure impacts them. According to Freixas et al. (2000), a more integrated network structure makes the system more resilient to any bank's insolvency. For instance, Allen and Gale (2000) contend that in a financial network with a greater density of connections, the losses of a bank in trouble are distributed among multiple nodes, lessening the effect of adverse shocks to specific institutions of the remainder of the framework. However, some researchers have argued that the more interconnected and concentrated a network is, the more it is vulnerable to contagions and shocks (Blume et al., 2011). Both views hold in the case of our research results of regression analysis between native cryptocurrencies and different centrality values to gauge the relationship between interconnections (degree, closeness, betweenness, and eigenvector) and systemic risk. Results show that the systemic risk contribution of native cryptocurrencies decreases with the increase in interconnections as shown by a negative relationship with each centrality measure. However, In the case of stablecoins, the systemic risk contribution increases with the increase in interconnections as indicated by positive results of regression analysis. There can be various reasons for the difference in the behavior of native currencies and stablecoins in response to changes in connectivity in the network.

According to Melachrinos and Pfister (2020), the emergence of very large issuers of stablecoins could give their initiatives a potentially systemic impact because they can reach a wider public and offer users a better degree of confidence. This worldwide spread of stablecoins would put monetary policy and financial stability at risk, especially in less developed nations. Aramonte et al. (2021) also mentioned in their research that the way that different designs ensure a constant value of stablecoins differs. Since they are administered off-chain, centrally managed,

like USD Tether, make up the bulk of stablecoins. A designated intermediary oversees the reserve assets that underpin centralized stable coins as well as their issuance and redemption. Therefore, an increase in the concentration of stablecoins can cause an increase in risk contribution.

Also, counterparty risk is very low for native cryptocurrencies because most of the native cryptocurrencies are managed, issued, and governed in a decentralized manner whereas it is high for stablecoins as they are issued, managed, and governed by some centralized entities. Failure of a single central counterparty of any major stable coin that is highly integrated can be a potential source of systemic risk. However, if governance and issuance of currencies are operated through a distributed and decentralized system it can greatly reduce the counterparty risk. According to Colombo (2023) a blockchain-based distributed and decentralized system could run on a single node, meaning that even if all but one node failed, the network would survive and continue to operate. Since all nodes participate in validating and recording transactions in the blockchain and they have the same set of data, for the network to fail, it would mean that all nodes have failed. This is less likely to happen the more nodes are present in the network.

The negative relationship between the systemic risk contribution of both native cryptocurrencies and stablecoins and stock market returns is confirmed by Xu (2022) who investigated the connections between cryptocurrencies and crypto-exposed US companies and discovered that when major cryptocurrencies experience significant increases in returns, significant increases in stock returns of blockchain and crypto-exposed US companies are more likely to occur. A recent research investigation carried out by Dong (2023) empirically investigated the contagion risk and systemic risk in crypto stocks. The study observed comovements in crypto and stock markets. When there is an increase in stock market returns investors, also increase their investment in crypto assets which reduces systemic risk in this

market and vice versa. Niyitegeka (2023) investigated by employing the DDC GARCH model and Wavelet analysis method, to measure the presence of financial contagion between cryptocurrency and equity markets during the black swan event of COVID-19. The generated results showed that in the first and second quarters of 2020, which correlate to times of financial unrest, were when the growing conditional correlation was most frequently observed. The presence of the pure form of financial contagion is also indicated by the rise in conditional correlation during times of financial turmoil according to Iyer (2022).

The relationship of native cryptocurrencies with FIG is positive but insignificant in our study. The Crypto Fear and Greed Index may give investors some idea of the current perception of some aspects of the cryptocurrency market but it is not useful as a tool for making investment decisions. Johnson (2023). FIG coefficients were negatively related to the systemic risk of stable coins and the relationship was significant which indicates that when there is fear in the cryptocurrency market people take a flight towards stable coins for their investment and in case of a greedy environment people withdraw from stable coins and invest in native cryptocurrencies which increases risk contribution of stable coins.

Conclusion

In recent years, the cryptocurrency market has observed ups and downs in the market, and many real-world phenomena have marked their impact on the cryptocurrency ecosystem. To investigate how topology structures based on interconnections of crypto assets change in response to these events, we have used the Minimum Spanning Tree methodology obtained from the Pearson correlation of daily returns for the period 2020–2023. It estimates the correlation between the prices of cryptocurrencies and the relationship between them. Further, to measure the systemic risk contribution and spillover effect of cryptocurrencies and stablecoins, we have used the unconditional and conditional CoVaR and Δ CoVaR approaches. This approach identifies the risk of assets in isolation and as a whole for the market. The state

variables for the estimation of the conditional $\Delta CoVaR$ estimate are the SP500 index, the CBOE volatility index, which captures real-world market changes, and the market capitalization of cryptocurrencies, which is used as a market indicator of the crypto ecosystem. Lastly, simple linear regression is run between the centrality measures obtained from MST analysis and the time-varying $\Delta CoVaR$ values of native cryptocurrencies and stablecoins. The control variables used in our regression analysis are SP500, the CBOE volatility index, and the fear and greed index of the cryptocurrency market. Results obtained from centrality values identify Ether as the central, most interconnected, and most influential node in the cryptocurrency market and GUSD as the most interconnected node in the MST analysis of 2020–2023. While results obtained from unconditional Δ CoVaR at 1% and 10% and conditional Δ CoVaR at 5% and 10% analysis indicate that Ether has the highest risk contribution in systemic risk, both unconditional and conditional estimates of Δ CoVaR at 1%, 5%, and 10% confirm GUSD as the highest risk contributor. MATIC is the periphery node among native cryptocurrencies, and USDT is the periphery node among stable coins with the lowest centrality values. MATIC is also the least risk contributor according to the unconditional estimation of Δ CoVaR at 5% and the conditional estimation at 1%, 5%, and 10% while Tether is the least risk contributor according to the unconditional estimation of Δ CoVaR at 1% and 10% and according to the conditional estimation at 10%.

For a thorough analysis, we employed both approaches for each year from 2020 to 2023 to examine the impact of significant events that occurred in the crypto market on native cryptocurrencies and stablecoins. The emergence of important nodes during periods of crises was observed in the cryptocurrency market in different years, as indicated by the MST weight calculated for each year. MST weight was lowest for MST 2022, which marks the collapse of two major cryptocurrencies. Results from unconditional and conditional time-varying Δ CoVaR estimates calculated for each year at 1%, 5%, and 10% showed that individual losses calculated

by value at risk (VaR) were higher for native cryptocurrencies and lower for stablecoins. However, Δ CoVaR values of BTC and stable coins were higher than their VaR values which indicates that their spillover effect and risk contribution are higher than their risk in isolation. In addition, the results of the linear regression between centrality values and time-varying Δ CoVaR values showed that the systemic risk contribution of native cryptocurrencies decreases with the increase in interconnections while that of stablecoins increases with the increase in interconnections. This could be attributed to the decentralized nature of the underlying blockchain technology of native cryptocurrencies which makes them risk absorbers with the increase in their interconnection. On the other hand, all stablecoins included in our study except DAI are centralized in their issuance, management, and governance. The relationship with SP500 and the Volatility Index VIX is negative for both native cryptocurrencies and stablecoins and is statistically significant which hints that when investors see high returns in traditional markets they also increase their investment in the crypto market which reduces their risks. Also, the relationship with fear and greed index is positive but is statistically insignificant and this result is in line with the research carried out by Johnson (2023) who confirmed that investors don't take into account the fear and greed index while making investment decisions. Our research has important implications for risk managers, policymakers, and portfolio managers.

References

- Adrian, T., & Brunnermeier, M. K. (2011). *CoVaR* (No. w17454). National Bureau of Economic Research.
- Agosto, A., & Cafferata, A. (2020). Financial bubbles: a study of co-explosivity in the cryptocurrency market. *Risks*, 8(2), 34.
- Ahelegbey, D. F., Giudici, P., & Mojtahedi, F. (2021). Tail risk measurement in crypto-asset markets. *International Review of Financial Analysis*, 73, 101604.
- Akhtaruzzaman, M., Sabri Boubaker, Duc Khuong Nguyen, and Molla Ramizur Rahman. (2022). Systemic risk-sharing framework of cryptocurrencies in the COVID–19 crisis. *Finance Research Letters*, 47.
- Allen, F., & Gale, D. (2000). Financial contagion. Journal of political economy, 108(1), 1-33.
- Ali, S., Moussa, F., & Youssef, M. (2023). Connectedness between cryptocurrencies using highfrequency data: A novel insight from the Silicon Valley Banks collapse. *Finance Research Letters*, 58, 104352.
- Antonio Majdandzic, L. A. B., Chester Curme, Irena Vodenska, Sary Levy-Carciente, & Havlin, H. E. S. S. (2016). Multiple tipping points and optimal repairing in interacting networks. *Nat Commun* 7.
- Aramonte, S., Huang, W., & Schrimpf, A. (2021). DeFi risks and the decentralisation illusion.
- Arner, D. W., Tanvi Ratna, Sijuade Animashaun, and Jatin Bedi. (2023). Interdependencies in Crypto Ecosystems: Drivers, Implications and Policy Responses. *Implications and Policy Responses*
- Azar, P. D., Garth Baughman, Francesca Carapella, Jacob Gerszten, Arazi Lubis, Juan Pablo Perez-Sangimino, Chiara Scotti, Nathan Swem, Alexandros Vardoulakis, and David E. Rappoport W. (2022). The Financial Stability Implications of Digital Assets. *FRB of New York Staff Report*, 1034.
- Bains, P., Arif Ismail, Fabiana Melo, and Nobuyasu Sugimoto. (2022). Regulating the Crypto Ecosystem: The Case of Unbacked Crypto Assets. *FinTech Notes*, 007.
- Baur, D. G., & Hoang, L. T. (2021). A crypto safe haven against Bitcoin. Finance Research Letters, 38, 101431.
- Blume, L. E., Brock, W. A., Durlauf, S. N., & Ioannides, Y. M. (2011). Identification of social interactions. In Handbook of social economics (Vol. 1, pp. 853-964). North-Holland.
- Board, F. S. (2018). *Crypto-asset markets: Potential channels for future financial stability implications*. F. S. Board.
- Borri, N. (2019). Conditional tail-risk in cryptocurrency markets. Journal of Empirical Finance, 50, 1-19.
- Bouri, E., Kamal, E., & Kinateder, H. (2023). FTX Collapse and systemic Risk Spillovers from FTX Token to Major Cryptocurrencies. *Finance Research Letters*, 104099.
- Bouri, E., Gupta, R., & Roubaud, D. (2019). Herding behaviour in cryptocurrencies. *Finance Research Letters*, 29, 216-221.
- Bovy, M., and Ruben Olieslagers. (2022). How to measure interconnectedness in the financial system using Graph Theory? Review and application of the indicators of interconnectedness for the cross-border exposures between 2011 and 2020.

- Briola, A., & Aste, T. (2022). Dependency structures in cryptocurrency market from high to low frequency. *Entropy*, 24(11), 1548.
- Briola, A., Vidal-Tomás, D., Wang, Y., & Aste, T. (2023). Anatomy of a Stablecoin's failure: The Terra-Luna case. *Finance Research Letters*, *51*, 103358.
- Bruhn, P., and Dietmar Ernst. (2022). Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach. *Journal of Risk and Financial Management*, 15(8), 346.
- Chen, B. X., & Sun, Y. L. (2024). Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework. *The North American Journal of Economics and Finance*, 69, 102036.
- Ciaian, P., Kancs, D. A., & Rajcaniova, M. (2018). The price of Bitcoin: GARCH evidence from high frequency data. arXiv preprint arXiv:1812.09452.
- Colombo, F. (2023). Systemic Risk and Blockchain Technology (Doctoral dissertation, University of Denver).
- Cornelli, G., Doerr, S., Frost, J., & Gambacorta, L. (2023). BIS Bulletin.
- Стойка, M. (2021). Cryptocurrency–definition, functions, advantages and risks. *Підприємництво і торгівля*, (30), 5-10.
- Dasman, S. (2021). Analysis of return and risk of cryptocurrency bitcoin asset as investment instrument. *Accounting and Finance Innovations*, 51.
- Esparcia, C., Escribano, A., & Jareño, F. (2023) To What Extent Did the Ftx Collapse Destabilize the Crypto Market? A High Frequency Volatility Study. *A High Frequency Volatility Study*.
- Foroutan, P., & Lahmiri, S. (2022). The effect of COVID-19 pandemic on return-volume and return-volatility relationships in cryptocurrency markets. *Chaos, Solitons & Fractals, 162,* 112443.
- Francés, C. J., Carles, P. G., & Arellano, D. J. (2018). The cryptocurrency market: A network analysis. *Esic Market Economics and Business Journal*, 49(3), 569-583.
- Freixas, X., Parigi, B. M., & Rochet, J. C. (2000). Systemic risk, interbank relations, and liquidity provision by the central bank. Journal of money, credit and banking, 611-638.
- Ganley, J. (2023). Are Stable Coins Stable? Stable Coins' Exposure to Cryptocurrency and Financial Market Volatility.
- Group, G. W. (2019). Investigating the Impact of Global Stablecoins. CPMI, 187, 31.
- Hakim, A., & Syuhada, K. (2023). Formulating MCoVaR to Quantify Joint Transmissions of Systemic Risk across Crypto and Non-Crypto Markets: A Multivariate Copula Approach. *Risks*, 11(2), 35.
- Hasan, M., Naeem, M. A., Arif, M., & Yarovaya, L. (2021). Higher moment connectedness in cryptocurrency market. *Journal of Behavioral and Experimental Finance*, *32*, 100562.
- Hasna, T. (2023). Exploring the Impact of Centrality Measures on Stock Market Performance in Stockholm Market: A Comparative Study.
- Hermans, L., Ianiro, A., Kochanska, U., Törmälehto, V. M., van der Kraaij, A., & Simón, J. M. V. (2022). Decrypting financial stability risks in crypto-asset markets. *Financial Stability Review*, 1.
- Hong, M. Y., & Yoon, J. W. (2022). The impact of COVID-19 on cryptocurrency markets: A network analysis based on mutual information. *Plos one*, *17*(2), e0259869.

- Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2018). Contagion risk measured by return among cryptocurrencies. In *Econometrics for Financial Applications* (pp. 987-998). Springer International Publishing.
- IOSCO. (2020). Issues, risks and regulatory considerations relating to crypto-asset trading platforms. https://www.iosco.org/library/pubdocs/pdf/IOSCOPD649
- Iyer, T. (2022). Cryptic connections: spillovers between crypto and equity markets. International Monetary Fund.
- Johnson, J. (2023). How Useful is the Crypto Fear and Greed Index When Making Cryptocurrency Investment Decisions. Available at SSRN 4407405.
- Kamau, C. G. (2022). Cryptocurrency Market in Kenya: A Review of Awareness and Participation by the youths.
- Katsiampa, P., Yarovaya, L., & Zięba, D. (2022). High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis. *Journal of International Financial Markets, Institutions and Money*, 79, 101578.
- Kołodziejczyk, H. (2023). Stablecoins as diversifiers, hedges and safe havens: A quantile coherency approach. *The North American Journal of Economics and Finance*, *66*, 101912.
- Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, 122-127.
- Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical Society*, 7(1), 48–50.
- Kumar, A., Iqbal, N., Mitra, S. K., Kristoufek, L., & Bouri, E. (2022). Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak. *Journal of International Financial Markets, Institutions and Money*, 77, 101523.
- Krygier, D. (2014). *Measuring systemic risk in the Nordic countries An application of CoVaR* (Doctoral dissertation, Master's Thesis, Supervisor: Professor Hans Byström, lund university).
- Mantegna, R. N., & Stanley, H. E. (1999). *Introduction to econophysics: correlations and complexity in finance*. Cambridge university press.
- Ma, Y., Zeng, Y., & Zhang, A. L. (2023). Stablecoin Runs and the Centralization of Arbitrage. Available at SSRN 4398546.
- Melachrinos, A., & Pfister, C. (2020). Stablecoins: A brave new world?. Stan. J. Blockchain L. & Pol'y, 4, 1.
- Mensi, W., Rehman, M. U., Shafiullah, M., Al-Yahyaee, K. H., & Sensoy, A. (2021). High frequency multiscale relationships among major cryptocurrencies: portfolio management implications. Financial Innovation, 7, 1-21.
- Niyitegeka, O., & Zhou, S. (2023). An investigation of financial contagion between cryptocurrency and equity markets: Evidence from developed and emerging markets. Cogent Economics & Finance, 11(1), 2203432.
- Obeng, C., & Attor, C. (2022). INTERCONNECTION AMONG CRYPTOCURRENCIES: USING VECTOR ERROR CORRECTION MODEL. International Journal of Entrepreneurial Knowledge, 10(2), 24-41.
- Peng, Y., Albuquerque, P. H. M., de Sá, J. M. C., Padula, A. J. A., & Montenegro, M. R. (2018). The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Systems with Applications, 97, 177-192.

- Polovnikov, K., Kazakov, V., & Syntulsky, S. (2020). Core–periphery organization of the cryptocurrency market inferred by the modularity operator. Physica A: Statistical Mechanics and its Applications, 540, 123075.
- Stanley, H. E., & Mantegna, R. N. (2000). An introduction to econophysics. Cambridge University Press, Cambridge.
- Tiwari, A. K., Adewuyi, A. O., Albulescu, C. T., & Wohar, M. E. (2020). Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies. *The North American Journal of Economics and Finance*, *51*, 101083.
- Tomeczek, A. F. (2022). A minimum spanning tree analysis of the Polish stock market. *Journal of Economics and Management*, 44(1), 420-445.
- Wang, G. J., Ma, X. Y., & Wu, H. Y. (2020). Are stablecoins truly diversifiers, hedges, or safe havens against traditional cryptocurrencies as their name suggests?. Research in International Business and Finance, 54, 101225.
- Wang, L., Yan, J., Chen, X., & Xu, Q. (2021). Do network capabilities improve corporate financial performance? Evidence from financial supply chains. *International Journal of Operations & Production Management*, 41(4), 336-358.
- Wasiuzzaman, S., & Rahman, H. S. W. H. A. (2021). Performance of gold-backed cryptocurrencies during the COVID-19 crisis. *Finance Research Letters*, 43, 101958.
- Weaver, N. (2018). Risks of cryptocurrencies. Communications of the ACM. 61(6), 4.
- Xie, Y., Kang, S. B., & Zhao, J. (2021). Are stablecoins safe havens for traditional cryptocurrencies? An empirical study during the COVID-19 pandemic. *Applied Finance Letters*, *10*, 2-9.
- Xu, F., Bouri, E., & Cepni, O. (2022). Blockchain and crypto-exposed US companies and major cryptocurrencies: The role of jumps and co-jumps. Finance Research Letters, 50, 103201.
- Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?. International Review of Financial Analysis, 60, 98-114.
- Zhao, K., Dong, G., & Bian, D. (2023). Detection of Illegal Transactions of Cryptocurrency Based on Mutual Information. Electronics, 12(7), 1542.

Name	Code
Bitcoin	BTC
Ethereum	ETH
BNB	BNB
Ripple	XRP
Cardano	ADA
DogeCoin	DOGE
Wrapped Bitcoin	WBTC
Bitcoin Cash	WBTC
Algorand	ALGO
ThorChain	RUNE
Rocket Pool	RPL
Terra Classic	LUNC
Tron	TRON
ChainLink	LINK
LiteCoin	LTC
Polygon	MATIC
Maker	MKR
VeChain	VET
Quant	QNT
Stacks	STX
Synthetix	SNX
Theta Network	THETA
EOS	EOS
Bitcoin SV	BSV
Decentraland	MANA
Gate Token	GT
Tezos	XTZ

Table 1. List of Native Cryptocurrencies

Table 2. List of Stable Coins:

Name	Code
Tether	USDT
USD Coin	USDC
True USD	TUSD
Binanace USD	BUSD
DAI	DAI
USDP	USDP
Pax Gold	PAXG
Statis Euro	EURS
Gemini Dollar	GUSD

Variable	Obs	Mean	Std. Dev.	Min	Max
BTC	45	.024	.2	474	.391
ETH	45	.049	.253	599	.578
BNB	45	.055	.328	566	1.555
XRP	45	.017	.374	-1.106	1.02
ADA	45	.034	.344	442	1.333
DOGE	45	.072	.47	419	2.072
WBTC	45	.024	.202	478	.39
BCH	45	01	.279	684	.991
ALGO	45	019	.298	77	.668
RUNE	45	.06	.48	671	1.129
LUNC	45	178	2.07	-13.435	1.298
RPL	45	.085	.393	56	1
TRON	45	.035	.216	542	.704
LINK	45	.024	.287	593	.696
LTC	45	001	.221	399	.454
MATIC	45	.075	.435	611	1.788
MKR	45	.023	.292	688	.925
VET	45	.025	.341	592	.826
QNT	45	.068	.306	613	1.005
SNX	45	.012	.362	598	.898
STX	45	.036	.362	783	1.16
THETA	45	.041	.391	633	1.374
EOS	45	044	.216	474	.368
BSV	45	048	.193	615	.399
MANA	45	048	.193	615	.399
XTZ	45	02	.256	534	.536
GT	45	.048	.234	34	.845
USDT	45	0	.016	076	.077
USDC	45	001	.017	081	.075
TUSD	45	0	.016	074	.076
BUSD	45	0	.016	075	.077
DAI	45	0	.017	085	.068
USDP	45	001	3.488	-16.118	16.59
PAXG	45	.004	.043	08	.104
EURS	45	001	.028	063	.053
GUSD	45	0	.018	076	.078

 Table 3: Descriptive Statistics of Native cryptocurrencies and Stable coins

Table 4. shows the centrality values of all crypto currencies during the year 2020. Centrality measures include degree, betweenness, closeness and eigenvector centrality and **Table 5** represents centrality measures for the year 2021. **Table 6** for the year 2022, **Table 7** for the year 2023 and **Table 8** for the entire period of 2020-2023 respectively.

	Table	e 4: MST Centra	lity Values 2020				Т
Node	Degree	Closeness	Betweenness	Eigenvector	No	de	Deg
BTC	1	0.007142857	0	0.020616002	ВТ	с	2
ETH	9	0.011627907	500	0.15744034	ET	Ή	8
USDT	1	0.005154639	0	0.002391204	US	DT	1
BNB	1	0.008333333	0	0.048013123	BN	IB	1
XRP	1	0.005555556	0	0.006119777	XI	RP	1
USDC	3	0.006410256	98	0.00794612	US	DC	2
TUSD	2	0.007692308	96	0.020929173	ΤU	JSD	5
BUSD	2	0.005319149	34	0.002671728	BU	JSD	2
ADA	3	0.00877193	98	0.059683532	AI	DA	1
DOGE	1	0.006756757	0	0.018201134	DO	OGE	1
WBTC	4	0.009433962	207	0.067602149	W	BTC	4
BCH	3	0.00877193	98	0.059683532	ВС	сн	5
DAI	1	0.005263158	0	0.002423255	DA	I	2
ALGO	1	0.006849315	0	0.023315631	AI	.GO	1
RUNE	1	0.005555556	0	0.006119777	RU	JNE	1
RPL	1	0.008333333	0	0.048013123	RF	Ľ	1
LUNC	1	0.006849315	0	0.023315631	LU	INC	1
TRON	1	0.00390625	0	0.000272672	TR	ON	1
LINK	2	0.00625	96	0.00782585	LI	NK	2
LTC	2	0.004504505	34	0.000894121	LT	Ċ	3
MATIC	2	0.005263158	66	0.002659249	M	ATIC	2
USDP	2	0.0078125	124	0.020961223	US	DP	1
PAXG	2	0.007575758	124	0.023002579	PA	XG	1
EURS	1	0.005154639	0	0.002391204	EU	JRS	1
MKR	3	0.009803922	254	0.06078805	M	KR	1
VET	2	0.006849315	34	0.020067426	VI	ΕT	1
QNT	1	0.007142857	0	0.020616002	QI	ΙT	1
STX	1	0.006849315	0	0.023315631	ST	X	1
SNX	1	0.008333333	0	0.048013123	SN	X	1
THETA	1	0.008333333	0	0.048013123	TH	IETA	2
EOS	2	0.006849315	34	0.020067426	EC	os	4
BSV	1	0.006756757	0	0.018201134	BS	V	1
MANA	1	0.006849315	0	0.023315631	M	ANA	1
GT	1	0.004504505	0	0.000814772	GT		1
XTZ	5	0.008928571	130	0.076454532	XT	Z	4
GUSD	3	0.00625	67	0.007841023	GU	JSD	2

Table 5: MST Centrality Values 2021					
Node	Degree	Closeness	Betweenness	Eigenvector	
BTC	2	0.006993007	234	0.02919058	
ETH	8	0.008403361	399	0.157423635	
USDT	1	0.003278689	0	0.000108343	
BNB	1	0.006535948	0	0.051165052	
XRP	1	0.005780347	0	0.016620482	
USDC	2	0.0041841	66	0.000917294	
TUSD	5	0.005524862	211	0.006740702	
BUSD	2	0.004784689	96	0.002488964	
ADA	1	0.005780347	0	0.016620482	
DOGE	1	0.006289308	0	0.032252174	
WBTC	4	0.007874016	318	0.078134799	
BCH	5	0.008	330	0.099232861	
DAI	2	0.003690037	34	0.000333347	
ALGO	1	0.005181347	0	0.008081587	
RUNE	1	0.006535948	0	0.051165052	
RPL	1	0.006535948	0	0.051165052	
LUNC	1	0.006535948	0	0.051165052	
TRON	1	0.003610108	0	0.000462611	
LINK	2	0.004694836	96	0.003454125	
LTC	3	0.004115226	67	0.001423354	
MATIC	2	0.005405405	124	0.00920423	
USDP	1	0.004651163	0	0.00219083	
PAXG	1	0.004651163	0	0.00219083	
EURS	1	0.004651163	0	0.00219083	
MKR	1	0.006535948	0	0.051165052	
VET	1	0.006289308	0	0.032252174	
QNT	1	0.00621118	0	0.025394986	
STX	1	0.005181347	0	0.008081587	
SNX	1	0.006535948	0	0.051165052	
THETA	2	0.006289308	34	0.028394425	
EOS	4	0.007194245	267	0.051137576	
BSV	1	0.006289308	0	0.032252174	
MANA	1	0.005181347	0	0.009228616	
GT	1	0.003610108	0	0.000462611	
XTZ	4	0.006289308	207	0.024865271	
GUSD	2	0.00621118	216	0.011678208	

	Table 6: MST Centrality Values 2022						
Node	Degree	Closeness	Betweenness	Eigenvector			
BTC	1	0.005847953	0	0.020207778			
ETH	8	0.009009009	448	0.142835479			
USDT	4	0.004694836	129	0.001676196			
BNB	3	0.008403361	298	0.082250395			
XRP	1	0.005076142	0	0.00978708			
USDC	1	0.003584229	0	0.000200964			
TUSD	3	0.005347594	179	0.00341182			
BUSD	1	0.004524887	0	0.001116334			
ADA	1	0.006060606	0	0.026709674			
DOGE	1	0.006896552	0	0.046735215			
WBTC	3	0.00729927	127	0.061760443			
BCH	3	0.005988024	67	0.02571339			
DAI	2	0.004081633	34	0.000614199			
ALGO	2	0.006134969	34	0.029911969			
RUNE	1	0.006896552	0	0.046735215			
RPL	2	0.006993007	34	0.052338426			
LUNC	1	0.005649718	0	0.01712493			
TRON	1	0.004016064	0	0.001573258			
LINK	1	0.004016064	0	0.001573258			
LTC	3	0.004651163	67	0.004808303			
MATIC	2	0.005405405	96	0.011548961			
USDP	1	0.004048583	0	0.000548445			
PAXG	2	0.006060606	196	0.007634916			
EURS	2	0.006896552	216	0.019922551			
MKR	1	0.006896552	0	0.046735215			
VET	7	0.007633588	308	0.081632001			
QNT	1	0.006535948	0	0.026912011			
STX	2	0.006369427	124	0.03048845			
SNX	1	0.006896552	0	0.046735215			
THETA	1	0.006060606	0	0.026709674			
EOS	1	0.004975124	0	0.008413322			
BSV	1	0.004975124	0	0.008413322			
MANA	1	0.006060606	0	0.026709674			
GT	1	0.006060606	0	0.026709674			
XTZ	2	0.007874016	234	0.053253797			
GUSD	1	0.004048583	0	0.000548445			

Table 7: MST Centrality Values 2023						
Node	Degree	Closeness	Betweenness	Eigenvector		
BTC	1	0.005848	0	0.023412		
ETH	8	0.009174	384	0.151003		
USDT	1	0.004082	0	0.000518		
BNB	1	0.006993	0	0.049122		
XRP	2	0.006289	124	0.020647		
USDC	3	0.005525	127	0.003856		
TUSD	3	0.004739	67	0.001591		
BUSD	1	0.004082	0	0.000518		
ADA	2	0.007519	150	0.055838		
DOGE	1	0.007194	0	0.02953		
WBTC	4	0.007299	99	0.071969		
BCH	2	0.006897	34	0.020102		
DAI	3	0.006452	179	0.009008		
ALGO	4	0.007519	99	0.043265		
RUNE	1	0.006993	0	0.049122		
RPL	1	0.006993	0	0.049122		
LUNC	1	0.005988	0	0.014074		
TRON	2	0.005348	96	0.007633		
LINK	2	0.004016	34	0.001025		
LTC	1	0.003534	0	0.000333		
MATIC	2	0.004608	66	0.002816		
USDP	1	0.004651	0	0.001254		
PAXG	1	0.005848	0	0.023412		
EURS	1	0.006993	0	0.049122		
MKR	2	0.006897	34	0.020102		
VET	5	0.00885	334	0.055257		
QNT	1	0.006993	0	0.049122		
STX	1	0.005848	0	0.023412		
SNX	2	0.007519	196	0.020906		
THETA	4	0.009524	378	0.090777		
EOS	1	0.006803	0	0.017975		
BSV	1	0.005587	0	0.006539		
MANA	1	0.005988	0	0.014074		
GT	1	0.005587	0	0.006539		
XTZ	1	0.005988	0	0.014074		
GUSD	1	0.005291	0	0.00293		

Source: Author's own calculations

	Table 8: MST Centrality Values 2020-2023						
Node	Degree	Closeness	Betweenness	Eigenvector			
BTC	1	0.007407407	0	0.01945752			
ETH	10	0.011235955	477	0.161641912			
USDT	1	0.004329004	0	0.000360597			
BNB	1	0.008130081	0	0.047772257			
XRP	1	0.005649718	0	0.007027304			
USDC	4	0.006060606	129	0.003767774			
TUSD	4	0.007194245	207	0.009301419			
BUSD	1	0.005025126	0	0.001113542			
ADA	1	0.008130081	0	0.047772257			
DOGE	1	0.006802721	0	0.019623791			
WBTC	4	0.00990099	283	0.065836345			
BCH	4	0.008849558	157	0.066398938			
DAI	2	0.005076142	34	0.001220114			
ALGO	1	0.007092199	0	0.02237781			
RUNE	1	0.008130081	0	0.047772257			
RPL	1	0.008130081	0	0.047772257			
LUNC	1	0.005649718	0	0.007027304			
TRON	3	0.007518797	127	0.027421651			
LINK	2	0.005128205	34	0.002902159			
LTC	2	0.006134969	66	0.008962013			
MATIC	1	0.004366812	0	0.000857715			
USDP	1	0.005025126	0	0.001113542			
PAXG	1	0.005780347	0	0.002748976			
EURS	1	0.005780347	0	0.002748976			
MKR	1	0.008130081	0	0.047772257			
VET	2	0.008264463	34	0.05234433			
QNT	1	0.007407407	0	0.01945752			
STX	1	0.007092199	0	0.02237781			
SNX	1	0.008130081	0	0.047772257			
THETA	1	0.006451613	0	0.01547004			
EOS	3	0.006993007	67	0.023777543			
BSV	1	0.006802721	0	0.019623791			
MANA	1	0.007092199	0	0.02237781			
GT	1	0.005988024	0	0.008104298			
XTZ	5	0.009345794	234	0.07571742			
GUSD	2	0.008403361	216	0.022206496			

Table 9: Summary of highest and lowest centrality values Index for native crypto currenciesand Stable coins for individual years from 2020-2023

Native Cryptocurrencies 2020	Highest Centrality Values	Lowest Centrality Values					
Centrality Index	ETH	TRON					
Stable Coins 2020							
Centrality Index	PAXG	USDT/EURS					
Native Cryptocurrencies 2021							
Centrality Index	ETH	TRON/GT					
Stable Coins 2021							
Centrality Index	GUSD	USDT					
Native Cryptocurrencies 2022							
Centrality Index	ETH	TRON/LINK					
Stable Coins 2022							
Centrality Index	EURS	USDC					
Native Cryptocurrencies 2023							
Centrality Index	ETH	LTC					
Stable Coins 2023							
Centrality Index	DAI	BUSD/USDT					

Table 10: Summary of highest and lowest centrality values Index for native crypto currenciesand Stable coins for entire period of 2020-2023

Native Cryptocurrencies 2020- 2023	Highest Centrality Values	Lowest Centrality Values
Centrality Index	ETH	MATIC
Stable Coins 2020 - 2023		
Centrality Index	GUSD	USDT

`x'	a_`x'	b_`x'	`x'_VaR	CoVaR_`x'	`x'_median	DCoVaR_`x'
Bitcoin	-0.04191	0.664228	-0.10405	-0.11102	0.000472	-0.06942
Ether	-0.04574	0.558138	-0.13644	-0.12189	0.001577	-0.07703
BNB	-0.05755	0.412822	-0.13998	-0.11533	0.001824	-0.05854
XRP	-0.06398	0.31348	-0.15108	-0.11134	0.000509	-0.04752
ADA	-0.06588	0.454764	-0.12891	-0.1245	0.000632	-0.05891
DOGE	-0.07825	0.144831	-0.17054	-0.10295	-0.00032	-0.02465
WBTC	-0.04172	0.667594	-0.10512	-0.1119	0.000587	-0.07057
BCH	-0.05512	0.379487	-0.15752	-0.11489	0.000983	-0.06015
ALGO	-0.05662	0.402749	-0.15815	-0.12031	0.001222	-0.06419
RUNE	-0.05607	0.296504	-0.20169	-0.11587	0.000132	-0.05984
RPL	-0.07342	0.305319	-0.21287	-0.13841	0.003408	-0.06603
LUNC	-0.0717	0.155704	-0.24481	-0.10982	-0.00209	-0.03779
TRON	-0.09328	-0.0226	-0.13708	-0.09018	0.002428	0.003154
LINK	-0.09275	-0.01817	-0.15446	-0.08995	0.003011	0.002862
LTC	-0.09398	-0.02808	-0.16172	-0.08944	0.001396	0.00458
MATIC	-0.09123	0.05328	-0.18042	-0.10084	0.000861	-0.00966
MKR	-0.06264	0.294252	-0.13868	-0.10344	-0.00015	-0.04076
QNT	-0.06731	0.287932	-0.15193	-0.11105	-0.00139	-0.04334
STX	-0.07535	0.225492	-0.16634	-0.11286	0.000258	-0.03757
SNX	-0.06532	0.326238	-0.18054	-0.12422	-0.00126	-0.05849
Theta	-0.06336	0.313582	-0.15696	-0.11258	0.001093	-0.04956
EOS	-0.05	0.405804	-0.16867	-0.11845	0.00038	-0.0686
BSV	-0.06692	0.257414	-0.14747	-0.10488	-0.00015	-0.03792
MANA	-0.06521	0.237231	-0.16619	-0.10464	0.001116	-0.03969
GT	-0.09105	0.005262	-0.13767	-0.09177	0.001137	-0.00073
XTZ	-0.05475	0.376939	-0.16728	-0.11781	0.001654	-0.06368
USDT	-0.08807	3.61484	-0.00741	-0.11486	2.92E-05	-0.0269
USDC	-0.08905	1.802337	-0.00908	-0.10542	0.00004	-0.01644
TUSD	-0.08972	3.717363	-0.00969	-0.12575	-6.6E-05	-0.03577
BUSD	-0.09102	0.218559	-0.00873	-0.09292	7.13E-06	-0.00191
DAI	-0.09228	0.461264	-0.01198	-0.09781	5.95E-05	-0.00555
USDP	-0.09023	0.207306	-0.01286	-0.0929	-2.4E-05	-0.00266
PAXG	-0.08633	1.03791	-0.02864	-0.11605	0.000167	-0.0299
EURS	-0.09105	0.656494	-0.05036	-0.12411	-0.00012	-0.03298
VETUSD	-0.0558	0.396798	-0.17641	-0.1258	0.0013	-0.07051
GUSD	-0.09626	1.231217	-0.03289	-0.13675	-2.4E-05	-0.04047

Table 12: Results of unconditional VaR, CoVaR, DCoVaR at 0.01 for native cryptocurrencies and stable coins

`x'	a_`x'	b_`x'	`x'_VaR	CoVaR_`x'	`x'_median	DCoVaR_`x'
BTC	-0.0246	0.682794	-0.05719	-0.06365	0.00047182	-0.0393713
ETH	-0.02183	0.518678	-0.07169	-0.05902	0.00157664	-0.03800408
BNB	-0.02862	0.396372	-0.06699	-0.05517	0.00182377	-0.02727516
XRP	-0.03156	0.307348	-0.07915	-0.05589	0.00050889	-0.0244826
ADA	-0.02706	0.360284	-0.07891	-0.05549	0.00063202	-0.02865926
DOGE	-0.03732	0.17745	-0.08124	-0.05173	-0.00032166	-0.01435887
WBTC	-0.02363	0.653418	-0.05717	-0.06099	0.00058669	-0.03773746
BCH	-0.02701	0.375261	-0.0779	-0.05625	0.00098337	-0.02960264
ALGO	-0.02729	0.334743	-0.09091	-0.05772	0.0012217	-0.03083895
RUNE	-0.03269	0.242263	-0.11361	-0.06022	0.00013191	-0.02755591
RPL	-0.03241	0.249816	-0.10565	-0.0588	0.00340822	-0.02724355
LUNC	-0.03799	0.126452	-0.11087	-0.05201	-0.00208611	-0.01375568
TRON	-0.04415	0.055206	-0.06871	-0.04794	0.00242823	-0.0039271
LINK	-0.04404	0.055541	-0.09585	-0.04937	0.00301142	-0.00549103
LTC	-0.04361	0.070355	-0.0783	-0.04912	0.00139644	-0.00560684
MATIC	-0.04495	0.037226	-0.09216	-0.04838	0.0008613	-0.00346282
MKR	-0.03029	0.308807	-0.07879	-0.05462	-0.00014807	-0.02428465
QNT	-0.03538	0.255883	-0.08661	-0.05754	-0.00139269	-0.02180689
STX	-0.03311	0.227345	-0.10098	-0.05607	0.0002576	-0.02301494
SNX	-0.03045	0.264023	-0.10951	-0.05937	-0.00125506	-0.02858147
THETA	-0.03222	0.294804	-0.09917	-0.06146	0.00109301	-0.02955819
EOS	-0.02458	0.403781	-0.08775	-0.06001	0.00037988	-0.03558513
BSV	-0.0302	0.329341	-0.08267	-0.05743	-0.00015302	-0.02717594
MANA	-0.03171	0.243173	-0.09694	-0.05529	0.00111637	-0.02384562
GT	-0.04452	0.086313	-0.06068	-0.04976	0.0011368	-0.005336
XTZ	-0.02564	0.357406	-0.09568	-0.05984	0.00165379	-0.03478713
USDT	-0.04537	1.148445	-0.00383	-0.04977	0.00002915	-0.00443424
USDC	-0.04531	-0.23233	-0.00367	-0.04446	0.00004	0.0008615
TUSD	-0.04565	2.388944	-0.00399	-0.05519	-0.000066	-0.00938071
BUSD	-0.04491	-0.26781	-0.00435	-0.04375	7.13E-06	0.00116666
DAI	-0.04584	-0.9134	-0.00508	-0.0412	0.00005946	0.00469553
USDP	-0.04668	0.742768	-0.00488	-0.0503	-0.00002424	-0.00360824
PAXG	-0.04557	0.555865	-0.01438	-0.05357	0.00016729	-0.00808846
EURS	-0.04448	0.362989	-0.02014	-0.05178	-0.00012014	-0.007266
VET	-0.02503	0.365686	-0.08872	-0.05747	0.00129968	-0.03291951
GUSD	-0.04329	0.899588	-0.01383	-0.05574	-0.00002437	-0.01242383

Table 13: Results of unconditional VaR, CoVaR, DCoVaR at 0.05 for native cryptocurrencies and stable coins

`x'	a_`x'	b_`x'	`x'_VaR	CoVaR_`x'	`x'_median	DCoVaR_`x'
Bitcoin	-0.01698	0.66716301	-0.03510787	-0.04040204	0.00047182	-0.02373746
Ether	-0.0158	0.50875764	-0.04754868	-0.03999455	0.00157664	-0.02499289
BNB	-0.01925	0.43783993	-0.04803762	-0.04028222	0.00182377	-0.02183131
XRP	-0.02128	0.35860385	-0.05187419	-0.03988652	0.00050889	-0.01878477
ADA	-0.01744	0.38824224	-0.05630449	-0.03929869	0.00063202	-0.02210516
DOGE	-0.02413	0.2230779	-0.05575504	-0.03657216	-0.00032166	-0.01236596
WBTC	-0.01683	0.63714548	-0.03575474	-0.03960603	0.00058669	-0.02315478
BCH	-0.0173	0.39982997	-0.05265689	-0.03835458	0.00098337	-0.02144698
ALGO	-0.01897	0.34191528	-0.06600758	-0.04154239	0.0012217	-0.02298672
RUNE	-0.02094	0.24669058	-0.08258394	-0.04131468	0.00013191	-0.02040522
RPL	-0.02254	0.26458988	-0.07426051	-0.04219073	0.00340822	-0.02055036
LUNC	-0.02564	0.12882509	-0.07731011	-0.03560204	-0.00208611	-0.00969074
TRON	-0.02954	0.06887386	-0.04549939	-0.03267219	0.00242823	-0.00330096
LINK	-0.03013	0.05507327	-0.06475732	-0.03369498	0.00301142	-0.00373225
LTC	-0.02929	0.08052271	-0.05403033	-0.03364128	0.00139644	-0.00446311
MATIC	-0.0295	0.04548424	-0.07268563	-0.03280592	0.0008613	-0.00334523
MKR	-0.02124	0.31758865	-0.06012089	-0.04032976	-0.00014807	-0.01904669
QNT	-0.02482	0.26797919	-0.06332713	-0.0417931	-0.00139269	-0.01659714
STX	-0.02308	0.23493663	-0.07420884	-0.04051067	0.0002576	-0.0174949
SNX	-0.02204	0.2631451	-0.08207073	-0.04363302	-0.00125506	-0.02126625
Theta	-0.02224	0.29611005	-0.06751943	-0.04223751	0.00109301	-0.02031683
EOS	-0.01657	0.41842356	-0.05930971	-0.04138749	0.00037988	-0.02497553
BSV	-0.02031	0.35665081	-0.05344594	-0.03936895	-0.00015302	-0.01900696
MANA	-0.02055	0.2612247	-0.07207019	-0.0393752	0.00111637	-0.01911814
GT	-0.02926	0.04468565	-0.03713866	-0.03092292	0.0011368	-0.00171036
XTZ	-0.01755	0.38543498	-0.06143952	-0.04123407	0.00165379	-0.02431837
USDT	-0.02942	0.22728439	-0.00239472	-0.02996258	0.00002915	-0.00055091
USDC	-0.02919	-0.07540565	-0.00257191	-0.02899899	0.00004	0.00019695
TUSD	-0.03006	1.4656462	-0.00282145	-0.03419723	-0.000066	-0.00403851
BUSD	-0.02936	-0.18059846	-0.00295489	-0.02883026	7.13E-06	0.00053494
DAI	-0.0303	-0.59260689	-0.00346391	-0.02824524	0.00005946	0.00208797
USDP	-0.0292	0.52711782	-0.00315142	-0.03086052	-0.00002424	-0.00164839
PAXG	-0.03008	0.34024812	-0.01025808	-0.03356731	0.00016729	-0.00354721
EURS	-0.0291	0.38868402	-0.01346985	-0.0343383	-0.00012014	-0.00518882
VETUSD	-0.01734	0.35598393	-0.06437083	-0.04025927	0.00129968	-0.02337765
GUSD	-0.02882	0.72107364	-0.00759791	-0.03429844	-0.00002437	-0.00546108

Table 14: Results of unconditional VaR, CoVaR, DCoVaR at 0.10 for native cryptocurrencies and stable coins

Variable	Obs	Mean	Std. Dev.	Min	Ma
VaR BTC	1357	103	.025	195	02
CoVaR BTC	1357	124	.027	23	0
DCoVaR BTC	1357	078	.018	149	02
VaR ETH	1357	132	.044	327	04
CoVaR ETH	1357	115	.032	257	04
DCoVaR ETH	1357	075	.025	185	02
VaR BNB	1357	134	.032	278	06
CoVaR BNB	1357	134	.032	245	00
DCoVaR BNB	1357	056	.013	121	03
	1257	145	024	204	0/
VaR XRP	1357	145	.024	204	06
CoVaR XRP	1357	101	.021	175	03
DCoVaR XRP	1357	044	.007	063	02
VaR XTZ	1357	164	.029	285	09
CoVaR XTZ	1357	11	.017	172	05
DCoVaR XTZ	1357	059	.01	1	03
VaR ADA	1357	138	.032	264	06
CoVaR ADA	1357	122	.033	26	04
DCoVaR ADA	1357	065	.014	121	0.
/aR DOGE	1357	181	.059	436	(
CoVaR DOGE	1357	106	.034	249	0
DCoVaR DOGE	1357	026	.008	064	0
/aR WBTC	1357	097	.023	188	0.
CoVaR WBTC	1357	117	.023	218	0.
DCoVaR WBTC	1357	073	.017	143	0. (
/aR BCH	1357	166	.063	462	0
CoVaR BCH DCoVaR BCH	1357 1357	112 062	.03 .023	254 176	0- 0
VaR ALGO	1357	17	.049	377	08
CoVaR ALGO	1357	125	.021	216	(
DCoVaR ALGO	1357	069	.019	152	0.
VaR RUNE	1357	205	.045	38	09
CoVaR RUNE	1357	123	.026	237	0
DCoVaR RUNE	1357	064	.012	116	0.
√aR RPL	1357	208	.085	593	!
CoVaR RPL	1357	13	.049	355	0
OCoVaR RPL	1357	062	.025	179	
/aR LUNC	1357	291	.107	747	'
CoVaR LUNC	1357	11	.03	237	0
OCoVaR LUNC	1357	046	.017	118	0
/aR TRON	1357	131	.049	382	0
CoVaR TRON	1357	081	.023	168	0
DCoVaR TRON	1357	.007	.003	.002	.0
/aR LINK	1357	154	.056	413	0
CoVaR LINK	1357	134 084	.038	415 16	0.
DCoVaR LINK	1357	.001	0	10	.0.
	1077			225	~
VaR LTC	1357	141	.04	335	0-
CoVaR LTC DCoVaR LTC	1357 1357	066 .013	.022 .004	159 .005	 .0.
VaR MATIC	1357	174	.062	462	0
CoVaR MATIC	1357	089	.026	198	02
DCoVaR MATIC	1357	002	.001	006	
/aR MKR	1357	136	.048	345	0.
CoVaR MKR	1357	104	.02	184	0

 Table 23: Conditional Descriptive Statistics of VaR, CoVaR, and DCoVaR at 0.01 for native cryptocurrencies and stable coins

DCoVaR MKR	1357	039	.013	098	(
VaR VET	1357	169	.063	445	03
CoVaR VET	1357	118	.042	313	02
DCoVaR VET	1357	066	.024	179	01
	1007				
VaR QNT	1357	142	.024	235	09
CoVaR QNT	1357	104	.014	159	06
DCoVaR QNT	1357	038	.007	064	02
VaR STX	1357	156	.025	262	09
CoVaR STX	1357	105	.025	217	04
DCoVaR STX	1357	033	.005	054	(
VaR SNX	1357	188	.036	332	11
CoVaR SNX	1357	123	.022	22	07
DCoVaR SNX	1357	061	.011	106	04
VaR THETA	1357	155	.022	213	0
CoVaR THETA	1357	111	.029	238	0-
DCoVaR THETA	1357	05	.006	07	0
VaR EOS	1357	171	.024	27	
CoVaR EOS	1357	111	.025	222	0
DCoVaR EOS	1357	058	.008	094	0 0
VaR BSV	1357	147	.037	321	0
CoVaR BSV	1357	102	.025	228	0 0
DCoVaR BSV	1357	039	.025	228 089	0 0
DC0 v ak B3 v	1557	039	.01	089	0
VaR GT	1357	116	.03	198	-
CoVaR GT	1357	09	.027	202	0
DCoVaR GT	1357	004	.001	006	0
VaR USDT	1357	008	.003	019	0
CoVaR USDT	1357	11	.028	235	0
DCoVaR USDT	1357	025	.009	063	0
VaR USDC	1357	008	.002	019	0
CoVaR USDC	1357	101	.027	222	0
DCoVaR USDC	1357	019	.006	048	0
VaR TUSD	1357	008	.003	021	0
CoVaR TUSD	1357	111	.02	191	0
DCoVaR TUSD	1357	028	.009	073	(
VaR BUSD	1357	01	.004	028	(
CoVaR BUSD	1357	078	.021	157	(
DCoVaR BUSD	1357	.011	.004	.002	.(
/aR USDP	1357	012	.004	03	(
CoVaR USDP	1357	081	.023	176	(
DCoVaR USDP	1357	.006	.002	.003	.(
VaR PAXG	1357	029	.01	078	-
CoVaR PAXG	1357	127	.027	249	(
DCoVaR PAXG	1357	044	.016	123	(
VaR EURS	1357	043	.011	085	-
CoVaR EURS	1357	137	.034	265	-
DCoVaR EURS	1357	043	.011	085	0
VaR DAI	1357	01	.004	027	(
CoVaR DAI	1357	085	.004	148	((
DCoVaR DAI	1357	085 .003	.001	148 .001)).
		~~	<u></u>		
VaR GUSD	1357	03	.017	105	0
CoVaR GUSD DCoVaR GUSD	1357	132 044	.035	286 156	
LICOVAK CIUSD	1357	044	.025	1.50	0

Variable	Obs	Mean	Std. Dev.	Min	Ma
VaR BTC	1357	054	.011	088	01
CoVaR BTC	1357	06	.012	105	02
DCoVaR BTC	1357	035	.007	06	01
VaR ETH	1357	069	.015	121	02
CoVaR ETH	1357	06	.013	121	02
DCoVaR ETH	1357	038	.007	067	01
VaR BNB	1357	066	.012	121	03
CoVaR BNB	1357	057	.012	112	02
DCoVaR BNB	1357	029	.006	057	01
V.D. VDD	1257	077	017	124	02
VaR XRP CoVaR XRP	1357 1357	077 057	.017 .013	124 098	02 02
DCoVaR XRP	1357	025	.006	098 042	02
V.D. VT7	1257	002	010	151	
VaR XTZ CoVaR XTZ	1357 1357	092 059	.018 .01	151 095	0 02
DCoVaR XTZ	1357	039	.006	054	02
VaR ADA	1357	077	.012	115	03
CoVaR ADA	1357	059	.013	108	02
DCoVaR ADA	1357	031	.004	045	(
VaR DOGE	1357	083	.021	158	02
CoVaR DOGE	1357	051	.011	091	02
DCoVaR DOGE	1357	015	.004	03	00
VaR WBTC	1357	055	.011	093	01
CoVaR WBTC	1357	059	.011	1	02
DCoVaR WBTC	1357	036	.007	063	01
VaR BCH	1357	076	.014	132	(
CoVaR BCH	1357	054	.008	085	03
DCoVaR BCH	1357	029	.006	054	01
VaR ALGO	1357	091	.013	141	05
CoVaR ALGO	1357	058	.009	096	03
DCoVaR ALGO	1357	031	.004	049	02
VaR RUNE	1357	116	.019	168	0
CoVaR RUNE	1357	061	.01	104	04
DCoVaR RUNE	1357	029	.003	038	02
VaR RPL	1357	104	.022	2	06
CoVaR RPL	1357	058	.013	119	03
DCoVaR RPL	1357	027	.006	055	01
VaR LUNC	1357	112	.015	154	05
CoVaR LUNC	1357	053	.011	094	01
DCoVaR LUNC	1357	015	.002	021	00
VaR TRON	1357	072	.024	183	01
CoVaR TRON	1357	044	.008	066	01
DCoVaR TRON	1357	003	.001	007	00
VaR LINK	1357	091	.024	188	02
CoVaR LINK	1357	044	.008	069	01
DCoVaR LINK	1357	002	.001	005	00
VaR LTC	1357	079	.016	136	03
CoVaR LTC	1357	046	.008	066	01
DCoVaR LTC	1357	004	.001	007	00
VaR MATIC	1357	092	.022	185	04
CoVaR MATIC	1357	043	.009	074	01
DCoVaR MATIC	1357	001	0	003	00
VaR MKR	1357	077	.016	133	02
CoVaR MKR	1357	053	.009	086	02
DCoVaR MKR	1357	024	.004	04	02
VaR VET	1357	09	.015	142	04
CoVaR VET	1357	09	.013	142	04
COTHER TELL	1001	002	.017	120	0

Table 24: Conditional Descriptive Statistics of VaR, CoVaR, and DCoVaR at 0.05 for native cryptocurrencies and stable coins

tVaR QNT	1357	088	.018	17	053
tCoVaR QNT	1357	059	.011	105	032
tDCoVaR QNT	1357	023	.006	049	013
tVaR STX	1357	1	.014	145	052
tCoVaR STX	1357	057	.011	1	027
tDCoVaR STX	1357	024	.003	034	013
tVaR SNX	1357	114	.013	165	091
tCoVaR SNX	1357	06	.01	104	043
tDCoVaR SNX	1357	03	.003	042	026
tVaR THETA	1357	099	.019	162	032
tCoVaR THETA	1357	062	.014	126	029
tDCoVaR THETA	1357	031	.007	055	012
tVaR EOS	1357	085	.014	121	041
tCoVaR EOS	1357	055	.009	079	041
tDCoVaR EOS	1357	03	.005	045	023
AV D DOV	1257	082	015	127	0.52
tVaR BSV	1357	082	.015	137	052
tCoVaR BSV	1357	056	.004	069	049
tDCoVaR BSV	1357	026	.006	047	013
tVaR GT	1357	057	.02	12	012
tCoVaR GT	1357	05	.01	087	019
tDCoVaR GT	1357	006	.002	013	001
tVaR USDT	1357	004	.001	008	001
tCoVaR USDT	1357	048	.01	085	016
tDCoVaR USDT	1357	005	.001	011	002
tVaR USDC	1357	004	.001	008	002
tCoVaR USDC	1357	043	.009	077	013
tDCoVaR USDC	1357	001	0	002	0
tVaR TUSD	1357	004	.001	01	002
tCoVaR TUSD	1357	055	.011	1	024
tDCoVaR TUSD	1357	011	.004	028	004
tVaR BUSD	1357	004	.001	01	002
tCoVaR BUSD	1357	041	.001	074	002
tDCoVaR BUSD	1357	.001	0	074	.002
WAR LICER	1257	005	001	000	002
tVaR USDP tCoVaR USDP	1357 1357	005 048	.001 .01	009 082	003 015
tDCoVaR USDP	1357	048	.01	082 009	015
AV-D DAYC	1057	015	004	024	007
tVaR PAXG tCoVaR PAXG	1357 1357	015 053	.004 .012	034	007 021
tDCoVaR PAXG	1357	053	.003	1 026	021
tVaR EURS	1357	021	.005	045	01
tCoVaR EURS	1357	021	.003	045	01
tDCoVaR EURS	1357	008	.002	017	018
tVaR DAI	1357	005	.002	013	002
tCoVaR DAI	1357	039	.002	013	002
tDCoVaR DAI	1357	.003	.008	.001	008
tVoD CUSD	1257	014	007	046	002
tVaR GUSD tCoVaR GUSD	1357 1357	014 055	.007 .013	046 111	003 03
tDCoVaR GUSD	1357	055 015	.007	048	
IDCUVAR GUSD	1557	015	.007	048	003

Variable	Obs	Mean	Std. Dev.	Min	Max
tVaR BTC	1357	036	.008	064	011
tCoVaR BTC	1357	041	.009	075	017
tDCoVaR BTC	1357	024	.005	045	01
tVaR ETH	1357	048	.009	076	015
tCoVaR ETH	1357	048 04	.009	078	015
tDCoVaR ETH	1357	04	.007	042	019
ibeo van Emi	1557	.025	.001	.012	.012
tVaR BNB	1357	046	.009	082	021
tCoVaR BNB	1357	039	.009	067	013
tDCoVaR BNB	1357	02	.005	04	011
tVaR XRP	1357	052	.011	081	018
tCoVaR XRP	1357	039	.008	059	01
tDCoVaR XRP	1357	018	.004	029	008
tVaR XTZ	1357	065	.013	104	022 016
tCoVaR XTZ tDCoVaR XTZ	1357 1357	041 025	.007 .005	059 042	018
IDCOVAR ATZ	1557	025	.005	042	015
tVaR ADA	1357	056	.011	094	019
tCoVaR ADA	1357	04	.008	068	015
tDCoVaR ADA	1357	022	.004	038	013
tVaR DOGE	1357	057	.014	094	02
tCoVaR DOGE	1357	036	.008	054	02
tDCoVaR DOGE	1357	012	.008	038	011
tVaR WBTC	1357	036	.008	067	013
tCoVaR WBTC	1357	04	.009	075	017
tDCoVaR WBTC	1357	023	.005	046	011
tVaR BCH	1357	052	.008	073	03
tCoVaR BCH	1357	037	.005	048	019
tDCoVaR BCH	1357	021	.004	034	012
	1257	0.64	01	005	0.2
tVaR ALGO tCoVaR ALGO	1357 1357	064 041	.01 .007	095 064	03 018
tDCoVaR ALGO	1357	023	.007	034	018
iDeo van ALGO	1557	025	.005	054	014
tVaR RUNE	1357	082	.009	105	054
tCoVaR RUNE	1357	042	.006	066	027
tDCoVaR RUNE	1357	02	0	022	019
tVaR RPL	1357	076	.015	139	052
tCoVaR RPL	1357	043	.009	085	024
tDCoVaR RPL	1357	021	.004	04	013
tVaR LUNC	1357	079	.014	112	025
tCoVaR LUNC tDCoVaR LUNC	1357 1357	036 01	.008 .002	057 014	007 003
IDEO VAR LOINE	1557	01	.002	014	005
tVaR TRON	1357	045	.014	103	017
tCoVaR TRON	1357	031	.006	047	01
tDCoVaR TRON	1357	002	0	004	001
tVaR LINK	1357	065	.016	115	014
tCoVaR LINK	1357	032	.006	05	009
tDCoVaR LINK	1357	002	0.000	004	001
tVaR LTC	1357	052	.013	088	013
tCoVaR LTC	1357	032	.006	048	011
tDCoVaR LTC	1357	003	.001	005	001
tVaR MATIC	1357	069	.018	131	024
tCoVaR MATIC	1357	031	.006	049	01
tDCoVaR MATIC	1357	002	0	004	001
tVaP MKP	1357	_ 057	01	- 086	010
tVaR MKR tCoVaR MKR	1357 1357	057 039	.01 .007	086 06	019 016
tDCoVaR MKR	1357	017	.007	025	010
					1.00
tVaR VET	1357	065	.011	101	027
tCoVaR VET	1357	041	.009	076	018
tDCoVaR VET	1357	024	.004	041	014

 Table 25: Conditional Descriptive Statistics of VaR, CoVaR, and DCoVaR at 0.10 for native

 cryptocurrencies and stable coins

tVaR QNT	1357	061	.012	116	03
tCoVaR ONT	1357	04	.012	073	01
tDCoVaR QNT	1357	04	.009	032	01
tVaR STX	1357	074	.012	113	03
tCoVaR STX	1357	04	.007	06	01
tDCoVaR STX	1357	017	.003	026	00
tVaR SNX	1357	082	.007	108	06
tCoVaR SNX	1357	044	.007	071	02
tDCoVaR SNX	1357	021	.001	026	01
tVaR THETA	1357	069	.014	112	01
tCoVaR THETA	1357	044	.01	086	0
tDCoVaR THETA	1357	022	.005	041	00
tVaR EOS	1357	062	.013	097	02
tCoVaR EOS	1357	062 04	.013	062	02
tDCoVaR EOS	1357	04	.008	062 041	01
IDCUVAR EUS	1557	023	.000	041	01
tVaR BSV	1357	053	.011	098	03
tCoVaR BSV	1357	039	.005	056	02
tDCoVaR BSV	1357	018	.005	037	00
tVaR GT	1357	039	.013	083	01
tCoVaR GT	1357	032	.006	049	00
tDCoVaR GT	1357	002	.001	004	(
tVaR USDT	1357	002	.001	006	00
tCoVaR USDT	1357	031	.006	048	00
tDCoVaR USDT	1357	001	0	002	
tVaR USDC	1357	003	0	005	00
tCoVaR USDC	1357	03	.006	047	00
tDCoVaR USDC	1357	0	0	0	00
tVaR TUSD	1357	003	.001	006	00
tCoVaR TUSD	1357	036	.001	055	00
tDCoVaR TUSD	1357	005	.007	013	00
IDCOVAR TUSD	1557	003	.002	015	00.
tVaR BUSD	1357	003	.001	006	00
tCoVaR BUSD	1357	03	.006	048	00
tDCoVaR BUSD	1357	0	0	0	.00
tVaR USDP	1357	003	0	005	002
tCoVaR USDP	1357	032	.006	048	0
tDCoVaR USDP	1357	002	0	003	00
tVaR PAXG	1357	01	.003	023	004
tCoVaR PAXG	1357	033	.003	052	00
tDCoVaR PAXG	1357	004	.001	009	00
Wab ELIDE	1257	012	002	020	0.0
tVaR EURS	1357	013	.003	029	00
tCoVaR EURS	1357 1357	034	.007	052	00
tDCoVaR EURS	1557	005	.001	012	00
tVaR DAI	1357	004	.001	009	00
tCoVaR DAI	1357	027	.006	042	00
tDCoVaR DAI	1357	.003	.001	.001	.00
tVaR GUSD	1357	009	.004	03	002
tCoVaR GUSD	1357	038	.008	071	0
tDCoVaR GUSD	1357	008	.004	028	00

Coef. 0000692	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
0000692	0					0
	0	-4.54	0	0	0	***
238	.035	-6.78	0	307	169	***
022	.006	-3.40	.001	034	009	***
.004	.004	0.98	.328	004	.011	
.002	.026	0.06	.951	05	.053	
	-0.061	SD deper	ndent var		0.062	
	0.054	Number	of obs		1170	
	16.734	Prob > F			0.000	
	-3237.357	Bayesian	crit. (BIC)		-3212.033	
	022 .004	022 .006 .004 .004 .002 .026 -0.061 0.054 16.734 -3237.357	022 .006 -3.40 .004 .004 0.98 .002 .026 0.06 -0.061 SD deper 0.054 Number 16.734 Prob > F -3237.357 Bayesian	022 .006 -3.40 .001 .004 .004 0.98 .328 .002 .026 0.06 .951 -0.061 SD dependent var 0.054 Number of obs 16.734 Prob > F -3237.357 Bayesian crit. (BIC)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 26: Regression Results of tDCoVaR_NC and Betweenness Centrality for Native Cryptocurrencies

*** *p*<.01, ** *p*<.05, * *p*<.1

Table 27: Regression Results of tDCoVaR_NC and Closeness Centrality for Native Cryptocurrencies								
tDCoVaR_NC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig	
Closeness_NC	-8.234	1.374	-5.99	0	-10.93	-5.537	***	
SP500	248	.035	-7.10	0	317	18	***	
VIX	022	.006	-3.43	.001	034	009	***	
FIG	.004	.004	1.20	.232	003	.012		
Constant	.04	.027	1.47	.143	013	.093		
Mean dependent var		-0.061	SD deper	ndent var		0.062		
R-squared		0.066	Number	of obs		1170		
F-test		20.702	Prob > F			0.000		
Akaike crit. (AIC)		-3252.337	Bayesian	crit. (BIC)		-3227.013		

*** p<.01, ** p<.05, * p<.1

Table 28: Regression Results of tDCoVaR_NC and Degree Centrality for Native Cryptocurrencies

tDCoVaR_NC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Degree_NC	007	.001	-4.94	0	01	004	***
SP500	237	.035	-6.75	0	306	168	***
VIX	021	.006	-3.33	.001	034	009	***
FIG	.004	.004	1.03	.301	003	.011	
Constant	.008	.026	0.29	.768	044	.059	
Mean dependent var		-0.061	SD deper	ndent var		0.062	
R-squared		0.057	Number	of obs		1170	
F-test		17.731	Prob > F			0.000	
Akaike crit. (AIC)		-3241.141	Bayesian	crit. (BIC)		-3215.818	
*** p<.01, ** p<.05, *	<i>p</i> <.1						

Table 29: Regression Results of tDCoVaR_NC and Eigenvector Centrality for native cryptocurrencies

tDCoVaR_NC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Eigenvector_NC	377	.056	-6.75	0	487	268	***
SP500	242	.035	-6.94	0	31	173	***
VIX	022	.006	-3.43	.001	034	009	***
FIG	.004	.004	1.00	.32	004	.011	
Constant	.008	.026	0.31	.757	043	.059	
Mean dependent var		-0.061	SD deper	ndent var		0.062	
R-squared		0.074	Number	of obs		1170	
F-test		23.211	Prob > F			0.000	
Akaike crit. (AIC)		-3261.711	Bayesian	crit. (BIC)		-3236.387	
*** - < 01 ** - < 05 *	m < 1						

*** *p*<.01, ** *p*<.05, * *p*<.1

Table 23. Reg	ression result	is of the oval	K_SC and	Detweenne	ss Centranty I	of stable com	3
tDCoVaR_SC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Betweenness_SC	.0000204	0	3.73	0	0	0	***
SP500	031	.008	-3.67	0	047	014	***
VIX	007	.002	-4.32	0	01	004	***
FIG	002	.001	-2.48	.014	004	0	**
Constant	.022	.006	3.47	.001	.009	.034	***
Mean dependent var		-0.006	SD deper	ndent var		0.009	
R-squared		0.102	Number	of obs		405	
F-test		11.341	Prob > F			0.000	
Akaike crit. (AIC)		-2707.156	Bayesian	crit. (BIC)		-2687.136	
***n < 01 **n < 05	*n < 1						

Table 23: Regression Results of tDCoVaR SC and Betweenness Centrality for stable coins

*** *p*<.01, ** *p*<.05, * *p*<.1

Table 24: Regression Results of tDCoVaR_SC and Closeness Centrality for stable coins

tDCoVaR_SC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Closeness_SC	062	.451	-0.14	.891	948	.824	
SP500	029	.009	-3.42	.001	046	012	***
VIX	006	.002	-4.06	0	009	003	***
FIG	003	.001	-2.87	.004	004	001	***
Constant	.024	.007	3.62	0	.011	.037	***
Mean dependent var		-0.006	SD dependent var			0.009	
R-squared		0.071	Number of obs			405	
F-test		7.610	Prob > F			0.000	
Akaike crit. (AIC)		-2693.350	Bayesian crit. (BIC)			-2673.330	

*** *p*<.01, ** *p*<.05, * *p*<.1

Table 25: Regression Results of tDCoVaR_SC and Degree Centrality for stable coins

tDCoVaR_SC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Degree_SC	.002	0	3.87	0	.001	.003	***
SP500	029	.008	-3.47	.001	046	013	***
VIX	006	.002	-4.16	0	009	003	***
FIG	002	.001	-2.55	.011	004	001	**
Constant	.019	.006	3.01	.003	.007	.032	***
Mean dependent var -0.006		SD dependent var			0.009		
R-squared		0.104	Number of obs			405	
F-test		11.641	Prob > F			0.000	
Akaike crit. (AIC)		-2708.243	Bayesian crit. (BIC)			-2688.224	
*** - < 01 ** - < 05	* . 1						

*** *p*<.01, ** *p*<.05, * *p*<.1

Table 26: Regression Results of tDCoVaR_SC and Eigenvector Centrality for stable coins

Table 26: Regre	ssion Results	of tDCoVaR	_SC and I	Eigenvector	Centrality for	r stable coins	
tDCoVaR_SC	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Eigenvector_SC	03	.036	-0.83	.406	101	.041	
SP500	029	.009	-3.33	.001	045	012	***
VIX	006	.002	-4.04	0	009	003	***
FIG	003	.001	-2.92	.004	004	001	***
Constant	.024	.006	3.74	0	.011	.036	***
Mean dependent var		-0.006	SD dependent var			0.009	
R-squared		0.072	Number of obs			405	
F-test		7.791	Prob > F			0.000	
Akaike crit. (AIC)		-2694.032	Bayesian crit. (BIC)			-2674.013	
*** .01 ** .05 *	. 1						

*** *p*<.01, ** *p*<.05, * *p*<.1

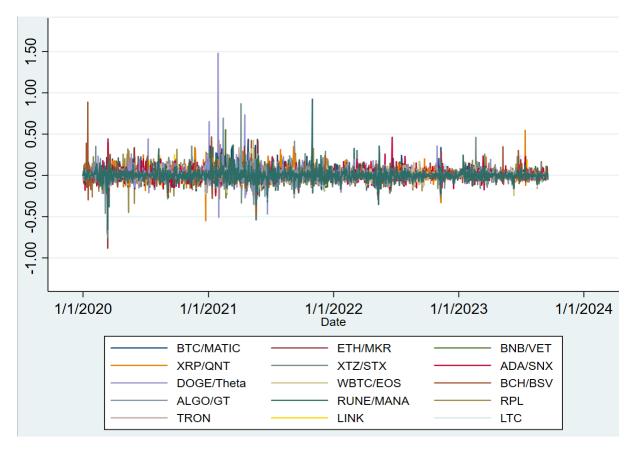


Fig 1: Changes in Prices of Cryptocurrencies 2020-2023

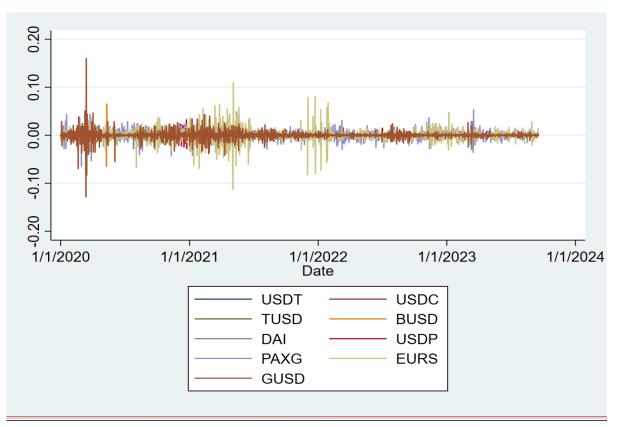


Fig 2: Changes in Prices of Stable coins 2020-2023

Appendix

 Δ CoVaR is calculated as the 1% CoVaR minus the 50%-CoVaR. Adrian and Brunnermeier (2011) propose referring to Δ CoVaR $_q^{J|i}$ where i is the definition of the financial system, as "exposure CoVaR" since it quantifies an institution's vulnerability to systemic financial events. The Δ CoVaR $_q^{J|i}$ metric is interesting because it can assist with determining the most critical enterprises in terms of being most at risk during financial crises. CoVaR methodology is implemented using the quantile regression (QR) method (Koenker and Bassett, 1978). The base of QR is the minimization of the absolute value of the sum of the residuals, which are weighted asymmetrically through the quantile dependent on whether they are positive or negative.

Unconditional estimation of VaR, CoVaR, and ACoVaR

The QR approach makes it simple to estimate CoVaR. To obtain $CoVaR^{CCM|i}$ we need to calculate 1% and 50%-VaR of cryptocurrency returns i, for i = 1, 2,..., 36, QR is run of i's returns on a constant only, (with q=1% and q=50%) for median state VaR:

$$X_q^i = \alpha_q^i + \varepsilon_q^i \tag{10}$$

$$VaR_q^i = \hat{a}_q^i \tag{11}$$

Similarly for the system,

$$X_q^{system} = \alpha_q^{system} + \varepsilon_q^{system}$$
(12)

$$VaR_{q}^{system} = \hat{a}_{q}^{system} \tag{13}$$

In order to get the $CoVaR^{CCM|i}$, we (quantile) regress the cryptosystem's returns on a constant and on the returns of cryptocurrency i:

$$X_q^{CCM|i} = a_q^i + \beta_q^i X^i + \varepsilon_q^i \tag{14}$$

After getting coefficients of α and β from QR, we construct $CoVaR^{CCM|i}$, by putting them together with VaR_a^i ,

$$CoVaR_q^{CCM|X^i=VaR_q^i} = VaR_q^{CCM}|VaR_q^i = \hat{a}_q^i + \hat{\beta}_q^i VaR_q^i$$
(15)

and further construct $\Delta CoVaR$

$$\Delta CoVaR_{q=1\%}^{CCM|i} = \hat{\beta}_{q=1\%}^{i} \left(VaR_{q=1\%}^{i} - VaR_{q=50\%}^{i} \right)$$
(16)

Conditional estimation of VaR, CoVaR, and ACoVaR

Unconditional estimation is incorporated with some additional macro variables in order to get more refined Δ CoVaR values.

Then QR is run for all cryptocurrency returns (i = 36) for quantile q=1% and q=50%. This will yield time-varying 50%-VaR and 1%-VaR series, conditioned on the vector M's macro variables.

$$X_t^i(q) = \alpha_q^i + \beta_q^i M_t + \varepsilon_t^i \tag{17}$$

Using estimates of α and β we can generate a conditional VaR series for *i*,

$$VaR_t^i(q) = \hat{\alpha}_q^i + \hat{\beta}_q^i M_t \tag{18}$$

Time varying cryptosystem VaR series is also generated the same way,

$$X_{t}^{system}(q) = \alpha_{q}^{system} + \beta_{q}^{system} M_{t} + \varepsilon_{t}^{system}$$

$$VaR_{t}^{system}(q) = \hat{\alpha}_{q}^{system} + \hat{\beta}_{q}^{system} M_{t}$$
(19)

For calculating CoVaR and Δ CoVaR, following regressions for q=1% and q=50%, are run,

$$X_t^{system|i}(q) = \alpha_q^{system|i} + \beta_{q,1}^{system|i} X_t^i + \beta_{q,2}^{system|i} M_t + \varepsilon_t^{system|i}$$
(20)

$$CoVaR_t^i(q) = \hat{\alpha}_0^{system|i} + \hat{\beta}_{q,1}^{system|i} VaR_t^i(q) + \hat{\beta}_{q,2}^{system|i} M_t$$
(21)

Where X_t^i , are the cryptocurrency returns *i*. Each cryptocurrency's systemic risk contribution is estimated as follows:

$$\Delta CoVaR_t^i(q) = CoVaR_t^i(q) - CoVaR_t^i(q = 50\%)$$
(22)

$$\Delta CoVaR_t^{system}(q) = CoVaR_t^{system}(q) - CoVaR_t^{system}(q = 50\%)$$
(23)

Thus, this approach calculates time varying risk contribution of each cryptocurrency to overall market systemic risk in times of distress.